Point 5: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production at the ILC

Madalina Chera

ILD Analysis/Software Phone Meeting 12.02.2014

Point 5

"Point 5" benchmark : gaugino pair production at ILC

http://arxiv.org/pdf/1006.3396.pdf (ILD LoI) http://arxiv.org/pdf/0911.0006v1.pdf (SiD LoI)

Point 5 - motivation

- > The "point 5" scenario is a good case for:
- studying the detector and particle flow performance
 - 2 escaping LSP's → missing energy
 - hadronic decay of gauge bosons
 - goal: clearly distinguish between W and Z pair events
- comparing and studying the performance of two versions of detector simulation (e.g. LOI and DBD)

Data Samples:

> Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{0}$ events

>	LOI sample:	>	DBD sample:
-	Signal generated with Whizard1.51 Background generated with Whizard1.40	-	Used the same signal generator files as in the LOI sample
•	Note: in the signal samples, the M_W was inadvertently lowered by Whizard to M_W = 79.8 GeV		
	Signal + background were simulated and reconstructed with <pre>ilcsoft v01-06</pre>	•	Re-simulated and re-reconstructed ONLY the signal samples with <pre>ilcsoft v01-16-02.</pre>
		•	Used the existing LOI SM samples for background
-	The jet energy scale was increased by 1%	•	The jet energy scale was not increased for the DBD produced signal
-	No γγ background overlay	•	No γγ background overlay
	The analysis was re-run on existing data samples		The analysis was re-run

Data Samples:

> Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{0}$ events

>	LOI sample:	>	DBD sample:
•	Signal generated with Whizard1.51 Background generated with Whizard1.40	•	Used the same signal generator files as in the LOI sample
-	Note: in the signal samples, the M_W was inadvertently lowered by Whizard to M_W = 79.8 GeV		
	Signal + background were simulated and reconstructed with <pre>ilcsoft v01-06</pre>	•	Re-simulated and re-reconstructed ONLY the signal samples with <pre>ilcsoft v01-16-02.</pre>
		•	Used the existing LOI SM samples for background
-	The jet energy scale was increased by 1%	-	The jet energy scale was not increased for the DBD produced signal
-	No γγ background overlay	•	No γγ background overlay
	The analysis was re-run on existing data samples	•	The analysis was re-run

Data Samples:

> Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{0}$ events

> LOI sample:

	Signal generated with Whizard1.51 Background generated with Whizard1.40		Used the same signal generator files as in the LOI sample
•	Note: in the signal samples, the M_W was inadvertently lowered by Whizard to M_W = 79.8 GeV		
•	Signal + background were simulated and reconstructed with <pre>ilcsoft v01-06</pre>	•	Re-simulated and re-reconstructed ONLY the signal samples with <pre>ilcsoft v01-16-02.</pre>
		•	Used the existing LOI SM samples for background
-	The jet energy scale was increased by 1%	-	The jet energy scale was not increased for the DBD produced signal
	No γγ background overlay	•	No γγ background overlay
	The analysis was re-run on existing data samples	-	The analysis was re-run

>

DBD sample:

Study case – Analysis Flow

- > The fully hadronic decay modes of the on shell gauge bosons were chosen as signal
- Signal topology: 4 jets and missing energy
- > Background:
 - SM 4f background is dominant
 - Each signal channel acts as background to the other!
- Event preselection apply cuts on:
 - Number of tracks in event and per jet
 - Minimum number of PFOs per jet = 3
 - Minimum jet energy and |cos(θ)_{jet}|
 - |cos(θ)_{pmiss}|< 0.99</p>
 - 100 GeV < E_{visible} < 300 GeV</p>
 - M_{missing} > 220 GeV
- Perform kinematic fit using MarlinKinFit: equal mass constraint (determine best jet pairing and improve resolution)
 - Apply cut on converged kinematic fit

СИТ	${\widetilde{\chi}_{l}}^{\pm}$ had	${\widetilde \chi_2}^0$ had	Other SUSY	SMgg	SM 6f	SM 4f	SM 2f	SM Other
No cut	28548	5488	74611	2.81e+09	519242	1.3e+07	8.8e+08	4.78e+06
	28529	5488	74650	3.663e+06	521610	1.48e+07	2.14e+07	4.75e+06
Total # tracks >20	27914	5449	24318	3.03e+06	493257	6.7e+06	5.3e+06	0
	27897	5449	24305	3.03+06	495605	6.7e+06	5.3e+06	0
100 < Evis < 300 GeV	27912	5449	22518	1.05e+06	44435	949380	1.56e+06	0
	27895	5449	22508	1.06e+06	44394	959805	1.56e+06	0
Ejet > 5GeV	27906	5446	20727	908393	44137	905894	1.47e+06	0
	27889	5446	20721	908492	44096	916507	1.47e+06	0
cos(θ) _{jets} < 0.99	26572	5240	19205	350316	41130	668947	875094	0
	26560	5240	19200	350364	41098	678083	874907	0
Y ₃₄ >0.001	26432	5218	15255	202462	38760	413787	166296	0
	26416	5218	15255	202510	38638	423080	166305	0
# tracks > 2/jet	25731	5146	9559	162161	22752	247160	145269	0
	25717	5146	9559	162193	22740	255870	145270	0
cos(θ) _{miss} < 0.99	25476	5099	9487	25097	22322	185679	4039	0
	25463	5099	9487	25087	22311	193706	4039	0
E _l < 25 GeV	25135	4981	6463	23129	14409	146984	3533	0
	25123	4981	6463	23133	14407	154927	3534	0
N _{PFO} >3	25041	4975	6102	23014	13697	139365	3518	0
	25029	4975	6103	23014	13696	139429	3518	0
$ \cos(\theta)_{Pmiss} < 0.8$	20148	4079	5179	681	9951	62676	529	0
	20144	4079	5180	681	9950	62688	529	0
Mmiss > 220 GeV	20143	4079	5179	630	3687	45875	386	0
	20139	4079	5180	630	3687	45867	389	0

Dijet [Boson] Mass Comparison – LOI to DBD

- > The DBD and LOI distributions are similar.
- > Compatible σ , DBD distribution slightly narrower.
- > The LOI sample has a jet energy increase of 1% while the DBD sample does not.
- > The DBD μ is shifted significantly to lower energies.

$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}\,Cross\,Section\,Measurement$

> Use dijet mass to separate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ events \rightarrow measure cross section

Obs.	DB	D	L	DI
	$\widetilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^0$	$\widetilde{\chi}_1{}^{\pm}$	$\tilde{\chi}_2^{\ 0}$
Efficiency	58%	64%	57%	65%
Purity	57%	12%	57%	13%

After selection cuts + kinematic fit:

Perform fit to disentangle chargino and neutralino candidates

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Cross Section Measurement

> After KinFit \rightarrow fit distribution with Voigt profile where Γ = boson natural width, σ = detector resolution:

- $\sigma \sim \text{norm W} / Z \rightarrow \text{check the statistical error on norm W/Z}$
- For both LOI and DBD samples, the statistical errors are almost identical:
 - In the case of $\tilde{\chi}_1^{\pm}$: $\simeq 1 \%$
 - In the case of $\tilde{\chi}_2^0$: $\simeq 2.8 \%$
- The same precision is obtained for the LOI sample as in the LOI analysis.

$\widetilde{\chi}_1{}^{\pm}\,and\,\widetilde{\chi}_2{}^0$ Mass Measurement

- > Mass difference to LSP (\tilde{z}_{1}^{0}) is **larger** than M_{z}
- Observe the decays of real gauge bosons
- > 2 body decay → the edges of the energy spectrum are kinematically determined
- > Use dijet energy spectrum "end points" in order to calculate masses

$$\gamma = \frac{E_{beam}}{M_{\chi}}$$
$$E_{\pm} = \gamma \cdot EV^{*} \pm \gamma \cdot \beta \cdot \sqrt{E_{V}^{*2} - M_{V}^{2}}$$

Real [model] edge values [GeV]:

W _{low}	W _{high}	Z _{low}	Z _{high}
80.17	131.53	93.24	129.06

Dijet [Boson] Energy Comparison LOI - DBD

> Use dijet energy to measure $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ mass

The DBD distribution appears slightly shifted towards lower energies. Nevertheless, the two distributions agree very well.

$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}$ Signal Sample Further Separation

 Calculate χ² with respect to nominal W / Z mass

$$\chi^{2}(m_{j1}, m_{j2}) = \frac{(m_{j1} - m_{V})^{2} + (m_{j2} - m_{V})^{2}}{\sigma^{2}}$$

min $\chi^2 \,{\to}\, {\widetilde{\chi}_1}^{\pm}\, and\, {\widetilde{\chi}_2}^0\, separation$

- > Downside: lose statistics
 - Cut away 43% of $\tilde{\chi}_1^{\pm}$ surviving events
 - Cut away 68% of $\tilde{\chi}_2^0$ surviving events
- However, after the χ² cut, the separation is quite clear:

Obs.	DBD		LOI	
	$\widetilde{\chi}_1{}^{\pm}$	$\tilde{\chi}_2^0$	$\widetilde{\chi}_1{}^{\pm}$	$\tilde{\chi}_2^{\ 0}$
Efficiency	57%	32%	56%	34%
Purity (total)	63%	35%	62%	35%
Purity (SUSY)	94%	68%	95%	66%

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Mass Measurement – "Endpoint" Method

Fit dijet energy spectrum and obtain edge positions:

$$f(x; t_{0_{1}}, b_{0_{2}}, \sigma_{1_{2}}, \gamma) = fS_{M} + \int_{t_{0}}^{t_{1}} (b_{2}t^{2} + b_{1}t + b_{0})V(x - t, \sigma(t), \gamma)dt$$

Where:

- The polynomial accounts for the slope of the initial spectrum
- The Voigt function accounts for the detector resolution and gauge boson width

Issues of the "Endpoint Method"

Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
DBD	79.5±1.7	128.3±1.2	91.9±0.8	127.9±0.7
LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5

The fitting method appears to be highly dependent on small changes in the fitted distribution \rightarrow it is clearly NOT appropriate for a comparing the simulation and reconstruction performance.

We need to apply a different edge extraction method!

Endpoint Extraction using an FIR Filter

- > Finite Impulse Response (FIR) filters are digital filters used in signal processing.
- > FIR filters can operate both on discrete as well as continuous values.
- > The concept of "finite impulse response" ↔ the filter output is computed as a finite, weighted sum of a finite number of values from the filter input.

$$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k] \leftarrow \text{the input signal}$$

the filter coefficients (weights)

- > y is obtained by convolving the input signal with the (finite) weights
- > FIR filters are used to detect edges in image processing techniques:

Testing the FDOG Filter

- > J.F.Canny* has suggested that an optimal filter is very similar to the first derivative of a Gaussian
- There are two important filter characteristics that must be optimised: **FDOGFilter** the bin size Entries 31 Mean -9.456e+16 0.02 RMS 9.456e+16 the filter size 0.01 It is crucial to strike the right balance between the two: -0.01
- If the bin size is too small \rightarrow the filter picks up a lot of statistical fluctuations
- If the filter size is too large \rightarrow the edge position cannot be localised anymore

-0.02 -15 -10 n. 15

A toy MC study is needed to optimise the filter and bin size!

*) Canny's criteria: [J. F. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, pages 679-698, 1986]

Testing the FDOG Filter

There are two important filter characteristics that must be optimised: the bin size and the filter size.

Filter response after applying the FDOG Filter to the $\tilde{\chi}_1^{\pm}$ energy distribution:

FIR Edge Extraction Comparison – LOI to DBD

In the **LOI** case: the fitted and filter values are extremely close to the real model value. In the **DBD** case: the filter value is much closer to the model one than the fitted edge.

Toy MC for the Filter Edge Extraction

- > To estimate the statistical precision of the edge extraction \rightarrow toy MC
- > 10000 $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ energy spectra have been produced
- The FDOG filter was then applied 10000 times
- > Example: for the $\tilde{\chi}_1^{\pm}$ case:

Edge Extraction Comparison

	True	80.17	131.53	93.24	129.06
	Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
	LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5
	DBD	79.5±1.7	128.3±1.2	91.9±0.8	127.9±0.7
<u>ן</u>	LOI	80.3±0.6	131.7±0.7	91.6±0.7	129.0±0.6
	DBD	80.1±0.2	130.2±0.7	91.9±0.2	127.2±0.7

- +
- The LOI uncertainties do not change much.
- The filter results are comparable between LOI and DBD in central value.
- The lower edges are much more precise with the filter method.

The filter extraction method is preferable:

- it is more stable
- provides smaller uncertainties in determining the edge position.

Conclusions

- A preliminary comparison between the LOI and DBD simulation and reconstruction has been made;
 - The DBD reconstructed dijet masses and boson energies are compatible to the LOI analysis.
 - The fitting method for the mass determination appears very sensitive to small changes. A more robust method is needed.
 - Applying a finite impulse response (FIR) filter in order to extract the edge information instead of the fitting method is:
 - More robust (i.e. independent on distribution shape)
 - Provides just as good if not better statistical precision
- > Outlook:
 - Perform comparison on Full LOI and Full DBD data (update soon)
 - Perform mass calibration (to determine systematics).
 - Perform 2D fit on dijet masses to improve the x-section measurement

Back up slides

Madalina Chera |

PhD Days | 12 February 2014 | 12.02.14 | Page 25

$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}\,Cross\,Section\,Measurement$

- Separating W and Z pairs candidates:
- SM background fitted with polynomial
- Signal distributions fitted with Voigt profile
 - Width (Γ) set to boson's natural width (2.11 GeV for W and 2.5 GeV for Z
 - Voigt $\sigma \simeq 3.5$ GeV detector resolution, deduced from a SM sample. The σ from the signal only sample is in the same ballpark!
- Determine relative W/Z fractions from fit

Endpoint Extraction Comparison – LOI to DBD

The DBD distribution appears slightly shifted towards lower energies. Nevertheless, the two distributions agree very well.

- > The changes of a function can be described by the derivative → interpret the histogram as a 1D function
- ➤ The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)$$

The first derivative is approximated by using the kernel [-1, 0, 1]

- The changes of a function can be described by the derivative \rightarrow interpret the histogram a a 1D function
- ➤ The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)$$

- The first derivative is approximated by using the kernel [-1, 0, 1]
- > The kernel is convoluted with the histogram:

$$response_i = -1 \times bin_{i-1} + 0 \times bin_i + 1 \times bin_{i+1}$$

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution
- Consider the histogram as an array of bin content values

Applying an FIR Filter

- Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution
- Consider the histogram as an array of bin content values
- Consider an array of chosen weights (smaller than the histogram!)
- Create new array of the same size:
 - Each entry in the new array is the weighted sum of the bin content values from the bins surrounding the corresponding bin in the original array.
 - The array is filled using the same (finite) weights each time.
- The value of the output depends on the pattern in the neighbourhood of the considered bin and NOT on the position of the bin
- The pattern of weights = kernel
- The filter application = convolution

Testing the FDOG Filter

Studied the effect of the filter size on a smeared step edge monte carlo data.

35 F

The FDOG filter does indeed perform best.

The filter size should be comparable to the size of the edge feature. We chose $\sigma = 5$ bins.

Choosing the Appropriate Filter

- The first derivative as kernel works
- > It is however a high pass filter \rightarrow may be rather noisy
- In order to choose an apropriate filter one can apply the following criteria:

- Good detection: probability of obtaining a peak in the response must be high
- Localisation: standard deviation of the peak position must be small
- Multiple response minimisation: probability of false postive detection must be small
- Canny has suggested that an optimal filter is very similar to the first derivative of a Gaussian

| 12.02.14 | Page 34

etina

Canny's criteria: [J. F. Canny. **A computational approach to edge detection.** *IEEE Trans. Pattern Analysis and Machine Intelligence*, pages 679-698, 1986]

$\tilde{\chi}_1{}^{\pm}$ and $\tilde{\chi}_2{}^0$ Separation as Study case for Particle Flow

- Signal topolgy:
 4 jets and missing energy
- Event preselection (kinematics, etc.)
- Perform kinematic fit: equal mass constraint (determine best jet pairing)

Kinematic fit χ^2

3.2. $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Cross Section Measurement 3.2.2. 2D dijet mass fit

