Point 5: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{\ 0}$ Pair Production at the ILC

Madalina Chera

ILD Analysis/Software Phone Meeting 12.02.2014

Point 5

"Point 5" benchmark : gaugino pair production at ILC

 <http://arxiv.org/pdf/1006.3396.pdf> (ILD LoI) <http://arxiv.org/pdf/0911.0006v1.pdf> (SiD LoI)

Point 5 - motivation

- > The "point 5" scenario is a good case for:
- > studying the detector and particle flow performance
	- 2 escaping LSP's \rightarrow missing energy
	- hadronic decay of gauge bosons
	- goal: clearly distinguish between W and Z pair events
- > **comparing and studying the performance of two versions of detector simulation (e.g. LOI and DBD)**

Data Samples:

Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{\,0}$ events

Data Samples:

Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{\,0}$ events

Data Samples:

Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{\,0}$ events

> **LOI sample:**

> **DBD sample**:

Study case – Analysis Flow

- > The **fully hadronic** decay modes of the on shell gauge bosons were chosen as **signal**
- **Signal topology:** 4 jets and missing energy
- > **Background**:
	- SM 4f background is dominant
	- Each signal channel acts as background to the other!
- Event **preselection** apply cuts on:
	- Number of tracks in event and per jet
	- \blacksquare Minimum number of PFOs per jet = 3
	- Minimum jet energy and $|cos(\theta)|_{\text{et}}$
	- \blacksquare $|cos(\theta)_{\text{pmiss}}|$ < 0.99
	- \blacksquare 100 GeV < $E_{visible}$ < 300 GeV
	- M_{missing} > 220 GeV
- **Perform kinematic fit** using MarlinKinFit: equal mass constraint (determine best jet pairing and improve resolution)
	- Apply cut on converged kinematic fit

Dijet [Boson] Mass Comparison – LOI to DBD

- The DBD and LOI distributions are similar.
- > Compatible σ, DBD distribution slightly narrower.
- The LOI sample has a jet energy increase of 1% while the DBD sample does not.
- The DBD μ is shifted significantly to lower energies.

${\tilde{\chi}}_1^{\;\pm}$ and ${\tilde{\chi}}_2^{\;0}$ Cross Section Measurement

> **Use dijet mass to separate χ ¹ [±] and χ ² ⁰ events** → **measure cross section**

> After selection cuts + kinematic fit:

> Perform fit to disentangle chargino and neutralino candidates

${\tilde{\chi}}_1^{\;\pm}$ and ${\tilde{\chi}}_2^{\;0}$ Cross Section Measurement

After KinFit \rightarrow fit distribution with Voigt profile where Γ = boson natural width, σ = detector resolution:

- σ \sim norm W / Z \rightarrow check the statistical error on norm W/Z
- **For both LOI and DBD samples, the statistical errors are almost identical**:
	- In the case of $\tilde{\chi}_1^{\pm}$: $\simeq 1\%$
	- In the case of $\tilde{\chi}_2^0$: $\simeq 2.8\%$
- The same precision is obtained for the LOI sample as in the LOI analysis.

${\widetilde \chi_1}^\pm$ and ${\widetilde \chi_2}^0$ Mass Measurement

- \blacktriangleright Mass difference to LSP (\tilde{x}_+^{δ}) is **larger** than $M_{\rm \scriptscriptstyle Z}$ 1 \sim χ
- > Observe the decays of real gauge bosons
- ≥ 2 body decay \rightarrow the edges of the energy spectrum are kinematically determined
- **> Use dijet energy spectrum ..end points" in order to calculate masses**

$$
\gamma = \frac{E_{beam}}{M_{\chi}}
$$

$$
E_{\pm} = \gamma \cdot EV^* \pm \gamma \cdot \beta \cdot \sqrt{E_V^*^2 - M_V^2}
$$

Real [model] edge values [GeV]:

Dijet [Boson] Energy Comparison LOI - DBD

> Use dijet energy to measure $\tilde{\chi}_{1}^{\pm}$ and $\tilde{\chi}_{2}^{0}$ mass

The DBD distribution appears slightly shifted towards lower energies. Nevertheless, the two distributions agree very well.

χ 1 [±] and χ ² ⁰ Signal Sample Further Separation

S Calculate χ^2 with respect to nominal W / Z mass

$$
\chi^{2}(m_{j1}, m_{j2}) = \frac{(m_{j1} - m_V)^2 + (m_{j2} - m_V)^2}{\sqrt{2}}
$$

min χ^2 $\!\to$ $\!\tilde{\chi}_1^{\texttt{\texttt{+}}}$ and $\tilde{\chi}_2^{\texttt{\texttt{0}}}$ separation

- Downside: lose statistics
	- Cut away 43% of $\tilde{\chi}_1$ [±] surviving events
	- **Cut away 68% of** $\tilde{\chi}_2^0$ **surviving events**
- \blacktriangleright However, after the χ^2 cut, the separation is quite clear:

χ 1 [±] and χ ² ⁰ Mass Measurement – "Endpoint" Method

> Fit dijet energy spectrum and obtain edge positions:

$$
f(x; t_{0-1}, b_{0-2}, \sigma_{1-2}, \gamma) = fS_M + \int_{t_0}^{t_1} (b_2 t^2 + b_1 t + b_0) V(x - t, \sigma(t), \gamma) dt
$$

Where:

- The polynomial accounts for the slope of the initial spectrum
- The Voigt function accounts for the detector resolution and gauge boson width

Issues of the "Endpoint Method"

 The fitting method appears to be highly dependent on small changes in the fitted distribution → **it is clearly NOT appropriate for a comparing the simulation and reconstruction performance.**

We need to apply a different edge extraction method!

Endpoint Extraction using an FIR Filter

- > Finite Impulse Response (FIR) filters are digital filters used in signal processing.
- > FIR filters can operate both on discrete as well as continuous values.
- The concept of "finite impulse response" \leftrightarrow the filter output is computed as a finite, weighted sum of a finite number of values from the filter input.

$$
y[n] = \sum_{k=-M_1}^{M_2} \underbrace{b_k x[n-k]}_{\text{the filter coefficients (weights)}}
$$

- y is obtained by convolving the input signal with the (finite) weights
- FIR filters are used to detect edges in image processing techniques:

Testing the FDOG Filter

- > J.F.Canny^{*} has suggested that an optimal filter is very similar to the first derivative of a Gaussian
- > There are two important filter characteristics that must be optimised: the bin size **Entries**

It is crucial to strike the right balance between the two:

the filter size

- If the bin size is too small \rightarrow the filter picks up a lot of statistical fluctuations
- If the filter size is too large \rightarrow the edge position cannot be localised anymore

FDOGFilter 31 Mean $-9.456e + 16$ 0.02 **RMS** $9.456e + 16$ ا ۱۵۰۹ -0.01 -0.02 -15 -10 -5 0 5 10 15

A toy MC study is needed to optimise the filter and bin size!

*) Canny's criteria: [J. F. Canny. **A computational approach to edge detection.** *IEEE Trans. Pattern Analysis and Machine Intelligence*, pages 679-698, 1986]

Testing the FDOG Filter

> There are two important filter characteristics that must be optimised: the bin size and the filter size.

Filter response after applying the FDOG Filter to the $\tilde{\chi}_1{}^\pm$ energy distribution:

FIR Edge Extraction Comparison – LOI to DBD

In the **LOI** case: the fitted and filter values are extremely close to the real model value. In the **DBD** case: the filter value is much closer to the model one than the fitted edge.

Toy MC for the Filter Edge Extraction

- To estimate the statistical precision of the edge extraction \rightarrow toy MC
- > 10000 $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ energy spectra have been produced
- The FDOG filter was then applied 10000 times
- S Example: for the $\tilde{\chi}_1^{\pm}$ case:

Edge Extraction Comparison

- The LOI uncertainties do not change much.
- The filter results are comparable between LOI and DBD in central value.
- The lower edges are much more precise with the filter method.

The filter extraction method is preferable:

- it is more stable
- provides smaller uncertainties in determining the edge position.

Conclusions

- A preliminary comparison between the LOI and DBD simulation and reconstruction has been made;
	- The DBD reconstructed dijet masses and boson energies are compatible to the LOI analysis.
	- The fitting method for the mass determination appears very sensitive to small changes. A more robust method is needed.
	- Applying a finite impulse response (FIR) filter in order to extract the edge information instead of the fitting method is:
		- \triangleright More robust (i.e. independent on distribution shape)
		- \triangleright Provides just as good if not better statistical precision
- Outlook:
	- Perform comparison on Full LOI and Full DBD data (update soon)
	- Perform mass calibration (to determine systematics).
	- Perform 2D fit on dijet masses to improve the x-section measurement

Back up slides

Chera |

Madalina Chera | ILD Analysis/Software Phone Meeting | 12.02.14 | **Page 25** Madalina PhD Days | 12 February 2014

${\tilde{\chi}}_1^{\;\pm}$ and ${\tilde{\chi}}_2^{\;0}$ Cross Section Measurement

- > Separating W and Z pairs candidates:
- SM background fitted with polynomial
- Signal distributions fitted with Voigt profile
	- Width (Γ) set to boson's natural width (2.11 GeV for W and 2.5 GeV for Z
	- Voigt $\sigma \approx 3.5$ GeV detector resolution, deduced from a SM sample. The σ from the signal only sample is in the same ballpark!
- Determine relative W/Z fractions from fit

Endpoint Extraction Comparison – LOI to DBD

The DBD distribution appears slightly shifted towards lower energies. Nevertheless, the two distributions agree very well.

- > The changes of a function can be described by the derivative \rightarrow interpret the histogram as a 1D function
- > The points that lie on the edge of the distribution \rightarrow detected by local maxima and minima of the first derivative

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)
$$

> The first derivative is approximated by using the **kernel [-1, 0, 1]**

- entries The changes of a function can be described by the derivative \rightarrow interpret the histogram as $\sum_{\frac{1}{2} \atop \frac{1}{2}}^{\infty}$ a 1D function
- > The points that lie on the edge of the distribution \rightarrow detected by local maxima and minima of the first derivative

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)
$$

- The first derivative is approximated by using the **kernel [-1, 0, 1]**
- The kernel is convoluted with the histogram:

 $response_i = -1 \times bin_{i-1} + 0 \times bin_i + 1 \times bin_{i+1}$

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- > Strategy: use weighted sums of bin content values to find patterns in distribution

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- > Strategy: use weighted sums of bin content values to find patterns in distribution
- > Consider the histogram as an array of bin content values

Applying an FIR Filter

- Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution
- Consider the histogram as an array of bin content values
- Consider an array of chosen weights (smaller than the histogram!)
- Create new array of the same size:
	- \blacksquare Each entry in the new array is the weighted sum of the bin content values from the bins surrounding the corresponding bin in the original array.
	- The array is filled using the **same** (finite) weights each time.
- The value of the output depends on the pattern in the neighbourhood of the considered bin and NOT on the position of the bin
- The pattern of weights = kernel
- The filter application = convolution

Testing the FDOG Filter

Studied the effect of the filter size on a smeared step edge monte carlo data.

 $35\frac{1}{2}$

The FDOG filter does indeed perform best.

The filter size should be comparable to the size of the edge feature. We chose $\sigma = 5$ bins.

Choosing the Appropriate Filter

- The first derivative as kernel works
- It is however a high pass filter \rightarrow may be rather noisy
- In order to choose an apropriate filter one can apply the following criteria:

- Good detection: probability of obtaining a peak in the response must be high
- Localisation: standard deviation of the peak position must be small
- Multiple response minimisation: probability of false postive detection must be small
- Canny has suggested that an optimal filter is very similar to the first derivative
FROGETITER of a Gaussian

Canny's criteria: [J. F. Canny. **A computational approach to edge detection.** *IEEE Trans. Pattern Analysis and Machine Intelligence*, pages 679-698, 1986]

χ 1 [±] and χ ² ⁰ Separation as Study case for Particle Flow

- Signal topolgy: 4 jets and missing energy
- Event preselection (kinematics, etc.)
- Perform kinematic fit: equal mass constraint (determine best jet pairing)

Kinematic fit χ^2

3.2. χ ¹ [±] and χ ² ⁰ Cross Section Measurement 3.2.2. 2D dijet mass fit

