
A tasklist for ILD optimization (incl. JSPS discussion)

Taikan Suehara (Kyushu)

ILD optimization in Lol

								-
Model Name		GLD	GLD'	GLD4LDC	LDC4GLD	LDC'	LDC	ILD .
Simulator		Jupiter			Mokka			Mokka
B field (T)		3.0	3.5	4.0	3.0	3.5	4.0	3.5
Beampipe R_{min}		15.0	14.0	13.0	15.5	14.0	13.0	14.5
Vertex	Geometry		cylindrical		ladders			ladders
Detector	Detector Layers		3 doublets			5		
	R_{min}	17.5	16.0	15.0	16.5	15.0	14.0	16.0
Barrel	Layers	4 cylinders			2 cylinders			2 cylinders
SIT	Radii	90, 160, 230, 300			161.4, 270.1			165, 309
TPC	R_{min}	437 435 371 371			395			
drift	R_{max}	1978	1740	1520	1931	1733	1511	1739
region	z_{max}	2600	2350	2160	2498	2248	2186	2247.5
TPC pad rows		256	217	196	260	227	190	224
ECAL	R_{min}	2100	1850	1600	2020	1825	1610	1847.4
barrel	Layers	33		20(thin)+9(thick)			20+9	
	Total X_0	28.4		22.9			23.6	
ECAL endcap z_{min}		2800	2250	2100	2700	2300	2550	2450
HCAL	Layers	46	42	37		48		48
barrel	R_{max}	3617	3260	2857	3554	3359	3144	3330
λ_I (ECAL+HCAL)		6.79	6.29	5.67		6.86		6.86

It was rather just a decision than an optimization

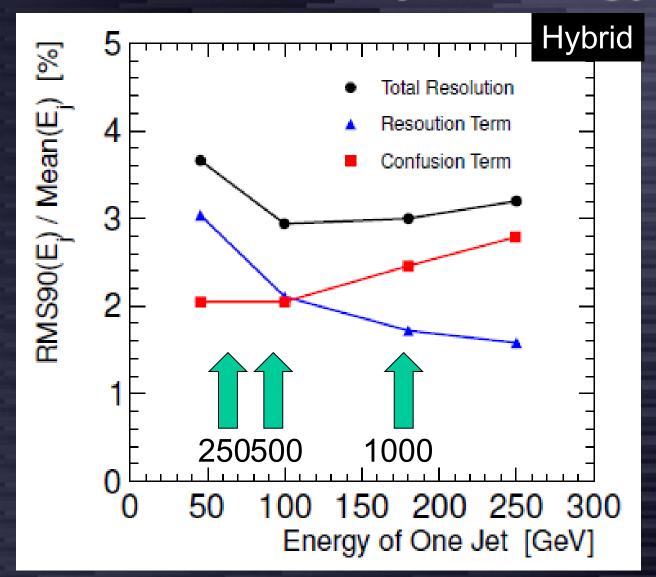
What to optimize?

- Size / B
 - r, z and B 3 parameters
 - affects tracking as well as PFA

- BUT not only size & B!!
 - SiECAL or ScECAL or Hybrid (very important for cost consideration)
 - Pixel size (CAL, VTX), depth
 - TPC or non-TPC (!)
 - Forward

How to optimize

- Should concentrate on critical physics
 - Not as LoI time
- Critical physics
 - 250 GeV: Higgs total cross section
 - 350 GeV: top (seems easy for ILC detectors)
 - 500 GeV: Higgs BR, (ttH) + NP
 - 1000 GeV: Higgs self + NP


 New physics: very difficult to identify 'important' model/parameter now...

Energy of critical physics

- 250 GeV: mainly 4f
 - 63 GeV / fermion
- 500 GeV: 4f 8f
 - 63 125 GeV / fermion
- 1000 GeV: 4f 8f
 - 125 250 GeV / fermion

- Note: we should not assume calorimeter replacement at 1 TeV run
 - In contrast, vertex will be probably replaced

Confusion and jet energy

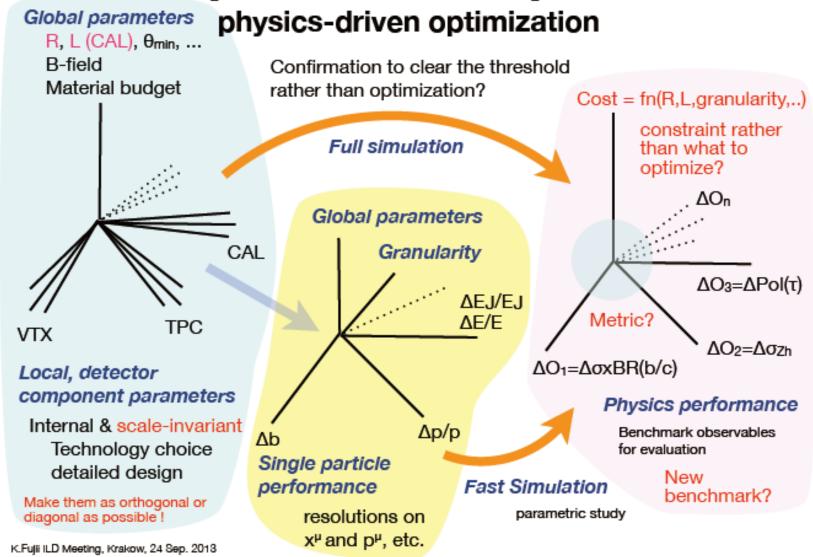
Physics: tasklist

- Recoil mass for tracking Shun
- qqH, invisible Tatsuhiko & more
- Higgs BR Hiroaki? (not apparent)
- ZHH / nnHH many
- ttH Yuji
- H → tautau will assign (for CAL study)

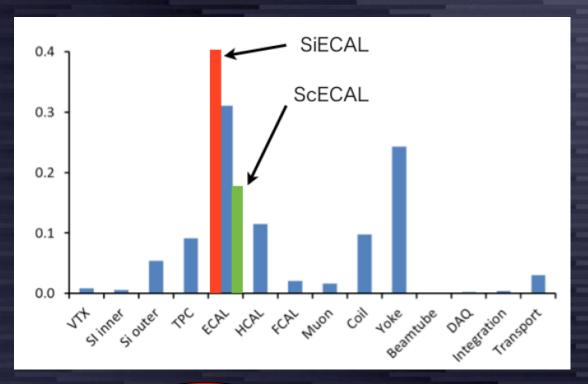

New physics?

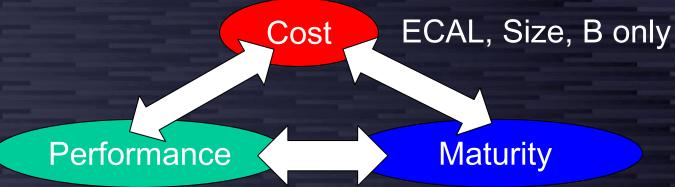
Software

- Actually, software is critical for optimization
- Optimization of software depends on detector configuration – need sophisticated tuning of software on each parameters
- Critical things
 - Tracking?
 - PFA
 - Flavor tagging
 - Jet Clustering?
- Need manpower of 'experts'


General comments

- Mature analysis for critical channels are essential
- Performance will be checked at several parameters – not only size but many others
 - We are generally not so positive to go smaller
- We should collect manpower we are discussing assignments
- Software is critical we should keep improvements of our core software




ILD optimization in TDR

Optimization Space

Cost: ECAL and size/B are concern

Cost

- Smaller is cheaper, for sure.
 Smaller B is also cheaper.
 - Smaller is better apparently not!
 - Expects significant degradation of PFA
 - Have to address in critical physics analyses
 - Expects degradation also in tracking
- ScECAL is cheaper, for sure.
 - ScECAL is better maybe??
 - Currently no significant degradation seen
 - Have to address also
 - Large ScECAL → coil&yoke cost
 - Small ScECAL also possible (of course)