ILD - Assembly, Transportation, Hall Design Personal Thoughts

Karsten Buesser, Klaus Sinram

13.03.2014 MDI WG Meeting

ILD in its Natural Environment...

Baseline in TDR

- When TDR was written, the site selection in Japan had not been done
- We assumed that VS cannot be done at all
 - partly to avoid giving arguments to the on-going process in Japan
 - VS excluded in Sefuri, but looks at least thinkable in Kitakami
- The selected Kitakami-site offers the chance to have a second look at the possible access to the underground hall. CFS group considers now:
 - 5 vertical shafts (5VS)
 - One horizontal tunnel for detectors (HT)
 - Hybrid solution (HT+VS)
- The boundary conditions for all solutions are not fully understood at this time
- It might well be that geological, financial, political or any other reasons that are beyond our studies will force a decision. In that case we will adapt.
- This should not stop us from looking at the best solution for both experiments.

ILD Mechanical Design

Yoke

ILD Installation Timelines

- Underground work VS: 1y assembly, ~1y commissioning
- Underground work HT: 3y+ assembly, ~1y commissioning

HT ILD Assembly

Only underground work shown...

Biggest Parts: Yoke and Coil

- · In each case: need to test the coil on site
- For high-field tests this requires the existence of a yoke
 - VS: yoke parts will be delivered from vendor to assembly hall
 - Yoke will be pre-assembled in assembly hall
 - · Coil will be assembled from modules and then tested in yoke on surface
 - requires cryo installations on surface in-time
 - HT: yoke needs to be pre-assembled somewhere (surface hall or at vendor)
 - Yoke parts need to be transported through HT
 - Yoke rings will be assembled in underground hall
 - Coil will be assembled from modules in underground hall and then tested in yoke
 - requires cryo installations in underground hall in-time
 - If anything does not work as predicted, it needs to be transported back to the surface for modification

HT Hall Design

HT Design for ILD

- Floor space is probably ok
 - detailed assembly study still pending
- 250t crane coverage needed along main hall (second 250t crane for SiD)
- some crane coverage in alcoves
- crane hook height needed is defined by:
 - detector height: 17m above platform
 - yoke segment height: 3.5m
 - tools, traverse, etc: 2m
 - in current design: 22.6m, so just ok
- Cryogenics infrastructure needed right after underground hall has been handed over to detector collaborations

ILD Installation Study (Preliminary)

Detector assembly area

Y. Sugimoto

- Area 1: Platform
 - YB0 assembly
 - Barrel detectors installation/ cabling
 - Endcap calorimeters installation
- Area 2/3: Alcoves
 - Endcap calorimeters cabling
 - QD0 support tube assembly
 - FCAL install/cabling
- Area 4: Tentative platform on beam line side
 - YE, YB+, YB- (iron yoke and muon detector) assembly/install/ cabling
- Area 5: Loading area side
 - HCAL rings assembly
 - Tooling assembly
 - Storage area

Hybrid HT+VS Hall Design

HT+VS Design for ILD

- Floor space is probably ok
 - · detailed assembly study still pending, but much easier than at HT
- 2x40t crane coverage along main hall
- some crane coverage in alcoves
- crane hook height needed is defined by:
 - detector height: 17m above platform
 - some height above detector: 2m
 - in current design: 22.6m, so could be reduced
- Cryogenics infrastructure needed later

Surface Installations VS

- Need temporary gantry crane for ~3500t
- 250t hall crane in surface hall, extends over shaft (plus one for SiD)
- Surface hall needs one platform
 - SiD will be constructed on it
 - ILD parts can be moved on platform after SiD has been lowered
- Alignment of surface halls and underground hall is coupled by VS

Surface Installations HT

- Size of surface halls probably similar to VS case
 - height could be reduced if yoke has been preassembled at vendor
 - storage (buffer) space
- 250t crane needed in surface hall (plus one for SiD)
 - handling of yoke elements
 - handling of coil elements
 - loading of detector parts on tunnel transportation system
- 2x20t crane for subdetector assemblies
- If tunnel transportation system can be extended to outside, detector hall can be further away from tunnel portal (if needed)

Transportation Issues

- Only for detector elements:
 - ~200 heavy weight transports
 - 61 transports with more than 100t
- Plus:

•

- toolings, etc.
- services

- Important:
 - What can be built on-site (on surface)?
 - What needs to be built in factories far away?

Tunnel diameter

• Early study (Y. Sugimoto), but 11m for HT and 9m for HT+VS seems reasonable if SiD choses not to use VS at all.

Tunnel Transportation System

• Is this a realistic solution?

- 225t/5axles → 450t with 2-trailers
- Capable of ~7% slope

- What about safety (brake failures, etc.)? Maybe need cog rail? Or hoists?
- If HT is a serious option, this needs to be worked on.

Service Paths

 How much space is needed for service paths into the central region?

- Study from Nikken-sekkei: 10m (78,5m²) shaft would accommodate elevator plus all services for accelerator (cooling, air ducts, cables, etc.)
- Removing the elevator and adding detector services, this would mean that 10m tunnel diameter is already needed for services
- AFAIK this is not included in the current designs with two tunnels (HT for detector hall, second HT for damping rings)
- Preliminary study (Y. Sugimoto) shows that there is much space available for services in VS

Other aspects (odds and ends)

• HT+VS:

- if machine commissioning is done w/o detectors, installation (QD0, shielding, instrumentation) can be delivered via VS directly to the IP
- two independent access ways into the hall might provide more safety

• HT:

- assembly halls don't have to be at the tunnel portal provided the transportation system in the tunnel can be extended outside
- Both:
 - tunnel provides efficient access to the underground areas during operations. Most equipment needed for maintenance, repairs, etc. can be driven into the hall w/o the need of cranes, elevators, etc

Summary

- We support to study the possible realisation of a hybrid VS+HT access in the Kitakami area
- Cons:
 - Surface infrastructure potentially more complex: platform in assembly hall
 - Assembly halls are geographically fixed directly above the experimental hall
 - HT part might be compromised by not optimal paths
- Pros:
 - ILD assembly much easier with VS
 - Transportation system in HT is not defined and could be a major technical and safety headache; gantry crane for VS successfully done at CMS
 - More space available for machine and detector service lines
 - Less underground volume necessary
 - Smaller crane (2x40t) instead of 250t in underground hall
 - Time lines of both detector and machine installations are largely decoupled