

Simulations & Scaling of the Performance of the ILD Tracking System

Yorgos Voutsinas DESY FLC group

georgios.voutsinas@desy.de

General ILD Optimisation meeting, 26/02/14

Outline

- Full simulation studies Radial scaling of the detector
 - Single muon tracks
 - IP & momentum resolution
 - > 6 fermions @ √s = 500 GeV
 - Tracking efficiency
- Fast simulation studies keeping aspect ratio constant
 - > IP & momentum resolution vs momentum
- Examined configurations

Magnetic Field (T)

TPC R _{out} 1.4m	3.5	4.0	4.5	5.0
TPC R _{out} 1.6m	3.5	4.0	4.5	5.0

Full Simulation – Why only radial scaling

- Geometry overlap when we shrink the ECAL TPC along the z axis
 - Beam tube with VXD etc...

Full Sim. - Single Muon Tracks

 $\theta = 85^{\circ}$

 $\theta = 40^{\circ}$

Full Sim. - Performance vs B field – TPC radius

• 10 GeV muon tracks

Track Finding Efficiency – Radius Effect

- 6 fermions @ \sqrt{s} = 500 GeV no pair bkg overlaid
- Definition of tracking efficiency same as DBD

Track Finding Efficiency – B Field Effect

7

• Plots from Mikael Berggren

• Plots from Mikael Berggren

Summary

- The IP resolution depends on the VXD
 - Scaling of the TPC radius has negligible effect on IP resolution
- Momentum resolution degrades by ~ 10 20 % going from 1.8m to 1.4m TPC radius
 - Can be restored with a higher magnetic field
 - It might come with a cost at tracking efficiency