Study of Higgs recoil mass various tracker resolution

Shun Watanuki (Tohoku University)

Motivation & Condition

How does the tracker resolution affect the results of the measurement of Higgs recoil mass and cross section?

I reconstructed ee -> Zh -> µµh events and estimated statistical errors of mass and cross section using toy-MC.

nple

	magnetic field [T]	eometry [cm]	ge
* nominal sar	3.5	185	
	3.5	160	
	4.5	160	
	3.5	140	
	5.0	140	

used DBD samples for BG.

Outline of analysis

BG rejection						
selection of di-lepton						
PT _{dl}						
M _{dl}						
acoplanarity						
dPT _{bal}						
COSθ _{missing}						
M _{recoil}						
	PT _{dl}					
Likelihood	acol					
	cosθ _{dl}					
	M _{dl}					

lepton selection	muon	electron
Ptrack	> 15	> 15
Eecal / Etotal	< 0.5	> 0.6
Etotal / Ptrack	< 0.3	> 0.9

Fitting function

- Gaussian Peak with Exponential Tail (GPET) for signal.
- ▶ 3rd order polynomial for BG.
- Fit recoil mass distribution (toy-MC) keeping signal shape fixed.
- Then, estimate stat. error of mass and cross section from mean and height value of GPET.

Result for µµX channel

	N _{sig}	N _{BG}	δ_{σ}	δ _m
nominal	1596	4584	3.55%	32.5 MeV
DBD			~3.7%	~37 MeV
160, 3.5	1590	4583	3.60%	35.6 MeV
160, 4.5	1592	4662	3.66%	33.7 MeV
140, 3.5	1595	4654	3.64%	39.3 MeV
140, 5.0	1586	4640	3.66%	34.0 MeV

- The deviation from nominal case may be not large. $(0.5 \sim 1.0\%)$ for cross section error
- If we use stronger magnetic field, mass error analysis will be better.
 However, this study may depend on likelihood selection, so more investigation is needed. Likelihood cut was fixed from DBD case.

About eeX channel samples

- I also tried to reconstruct eeX channel, but I found there are two problems.
 - One is that PFO's deposited energy of calorimeter is strange.
 - In SGV samples, there are only events in which PFO's deposited energy has value only in one calorimeter, and another is zero.
 - Then, I can't reconstruct correctly because a lot of events are rejected in process of e[±] selection.

efficiency of e[±] selection ~70% -> ~20%

Same thing can be said in $\mu\mu X$ channel study, but in the channel, selection eff. is similar to DBD case (a few better, ~87% -> ~90%).

Bremsstrahlung recovery

Another problem is about bremsstrahlung.

- Since energy resolution of photon is bad, if I perform bremsstrahlung recovery to eeX recoil mass, the distribution should have wide width.
- But right figure shows that the distribution was not widened after recovery, which mean that photon resolution is not smeared in SGV samples.

Summary

- >I reconstructed various tracker resolution $\mu\mu X$ SGV samples to estimate the effect of tracker in measurement of higgs mass and cross section.
 - As a result, cross section error didn't vary significantly, but mass error was better if stronger magnetic field was used.
- In eeX channel samples, there were some problems in the reconstruction.
 - PFO's deposited energy in calorimeter is strange.
 - Photon energy resolution may not be smeared.