Report from Parameters Group

ILD Optimisation Meeting February 26, 2014 J.List (DESY)

on behalf of the parameters group

A new Parameters Group

- Established in January by Hitoshi Yamamoto
- chaired by Jim Brau, further members:
 - Tim Barklow, Keisuke Fujii, JL
- Initial charge:
 - outline for key physics topics what integrated luminosity is needed at what energies
 - coherent discussion of issues regarding initial and evolution of the machine parameters up to 500 GeV
 - Work with accelerator, MDI, detector concept and physics groups
- Preliminary input to LCC/LCB meeting beginning of February

Key ideas in Initial Report to LCB

- 1) Start operation at 250 GeV, but move on to 350 GeV as soon as technically possible (cryomodules, cryo&RF power, operational issues)
- 2) Reconsider top baseline energy: 550 GeV
- 3) Include safety margins in energy reach (thresholds!)
- 4) Consider strategies for operation at
 - · Z pole (for physics, with positron polarisation)
 - · WW threshold (with positron polarisation)
 - · ZH threshold scan

250 GeV vs 350 GeV: Higgs

- Higgs production through WW fusion
 - \rightarrow hWW coupling
 - \rightarrow much improved total width
 - \rightarrow much improved couplings from all σ x BR
- Backgrounds in the Higgs channels decrease by ~30% when 250 GeV \rightarrow 350 GeV
- Lol / SB2009 studies (H. Li et al): measurements of σ x BR and total ZH cross-section at 350 GeV work as well or better than at 250 GeV
- Main weakness at 350 GeV: ultra-precise recoil mass limited by momentum resolution at 350 GeV → could always go back to 250 GeV if needed

250 GeV vs 350 GeV: Higgs

• H. Li, LCWS Beijing 2010:

Only muon-channel, Beam Pol. (e-: -80%, e+: +30%)							
	Peam Par	$ \mathcal{L}_{int} (fb^{-1}) $	e	S/B	$M_H~({ m GeV})$	σ (fb) $(\delta\sigma/\sigma)$	
	RDR 250	188	55%	62%	120.001 ± 0.043	$11.63 \pm 0.45 \ (3.9\%)$	
	RDR 350	300	51%	92%	120.010 ± 0.084	7.13 ± 0.28 (4.0%)	
SB2009 w/o TF 250b		55	55%	62%	120.001 ± 0.079	11.63 ± 0.83 (7.2%)	
SB2009 w/o TF 350		175	51%	92%	120.010 ± 0.110	$7.13 \pm 0.37 \ (5.2\%)$	
SB2009 TF 250b		68	55%	62%	120.001 ± 0.071	$11.63 \pm 0.75 \ (6.4\%)$	
S	B2009 TF 350	250	51%	92%	120.010 ± 0.092	$7.13 \pm 0.31 \ (4.3\%)$	

- Need to redo with 125 GeV, TDR beam parameters
- ILD specific: various TPC radii

→ SGV samples already available - thanks to Mikael!

J.L ist

250 GeV vs 350 GeV: Top, W& X?

- Top physics starts: Threshold scan → top mass! Important input for
 - SM / SUSY fits
 - htt coupling extraction
- W anomalous couplings from W pair production: sensitivity grows quadratically with ECM
- Finally: There might be a discovery out there....

Choice of maximum baseline energy

- 500 is a number with two zeros at the end....
- Now that we know the Higgs mass – look at tth:

CME	sigma	% of max
500	0.36fb	15% × 3.7!!
550	1.34fb	55%
600	2.01fb	82%
800	2.44fb	100%

=> 10% increase in energy enhances signal by 370% while background decreases....

Safety Margins

- All three energies are defined by physics thresholds:
 - 250 GeV \rightarrow Zh
 - 350 GeV \rightarrow ttbar
 - 550 GeV \rightarrow tth

How close do we have to get to these energies?

- 250 GeV: How much more lumi needed for same precision on Zh coupling when machine reaches 5% less, 10% less etc?
- 350 GeV = 2x175 GeV => really at threshold!
 No ttbar physics possible if we don't get there!
- 550 GeV: 10% less -> ~4x longer for same tth precision!

Physics running with ECM < 250 GeV

- The physics case for SM precision measurements strengthens with every fb⁻¹ of LHC data without further discovery!
- from experiment side:
 - How much integrated luminosity with which polarisation needed for significant improvement over existing + HL-LHC measurements?
- from accelerator side:
 - First proposals for beam parameter sets, possibly several options to study

After the LCB meeting

Feed-back received via Hitoshi:

- Activity of parameters group was well received and its importance emphasized
- Will be promoted to joint working group with machine:
 - Nick Walker will become co-chair
 - further members tbc
- Sofar: mainly collected existing knowledge

=> to move on, we need dedicated studies detector optimisation and "machine optimisation" need to be considered coherently!