Flavour Tagging Performance in the presence of Pair Background

2014/02/26 Tohoku University Tatsuya Mori

Performance evaluation of flavor tagging

- evaluated cases
 - CMOS + current ILD tracking
 - CMOS + FPCCDTrackFinder
 - FPCCD + FPCCDTrackFinder
- considering pair-BG
- Sample: $Z \rightarrow bb$, cc, qq @ 250 GeV
- Flavor Tagging Algorithm: LCFIPlus
 - sample: 2000 events individually
 - training sample: 14000 events individually (not overlaid with pair-BG)

of BXs / readout

layer	FPCCD	CMOS
0	1312	90
1	1312	18
2	1312	180
3	1312	180
4	1312	180
5	1312	180

performance without and with pairs

- The performance degrades by pairs
- FPCCDTrackFinder is better than current ILD tracking regardless of pairs
- CMOS is better than FPCCD in the presence of pairs

Degradation by pairs

VXD	tracking	pairs	b-tag purity [%] @ eff. 80 %		c-tag purity [%] @ eff. 60 %	
CMOS	std	×	52% 82	2.8	36%	56.4
CMOS	std	0	down ∳ 3	0.4	down	20.0
CMOS	FPCCDTF	×	42% 83	3.0	35%	58.1
CMOS	FPCCDTF	0	down ∳ 4	8.0	down	22.8
FPCCD	FPCCDTF	×	64% 8	5.5	45%	63.9
FPCCD	FPCCDTF	0	down∳ ₂⁄	1.5	down	18.7

- Regardless of pairs, FPCCDTrackFinder is better that current ILD tracking
 - purity 10 % up @ efficiency 80 % b-tag
 - purity 3 % up @ efficiency 60 % c-tag
- With pairs, FPCCD is worse than CMOS
 - purity 19 % down @ efficiency 80 % b-tag
 - purity 3 % down @ efficiency 60 % c-tag

Pt distribution of tracks in b-jet (without pair-BG)

Setup: FPCCD + FPCCDTrackFinder

Track Requirement: SIT hit >= 1 || TPC hit >= 10 || $|\cos\theta| > 0.9$

 \rightarrow Basically, most pair BG tracks don't have SIT or TPC hits.

→ Most signal tracks with $|\cos\theta| > 0.9$ basically don't have SIT or TPC hits due to their coverage, so I set $|\cos\theta| > 0.9$ so that those tracks can survive in the above requirement.

Pt distribution of tracks in b-jet (with pair-BG)

red: all tracks blue: tracks with purity > 0.75 black: tracks with purity [0, 0.75] purple: pair-BG tracks

- "Track req : ON" discards most of pair-BG, but don't do tracks with purity [0, 0.75]
- We find that pair-BG makes a lot of tracks with purity [0, 0.75]
 - Track req doesn't kill these tracks → We need to find the way to discriminate them from tracks with purity > 0.75

performance without and with pairs 2

 We can suppress the deterioration (but lower than the case without pairs)

Improvement by track requirement

VXD	tracking	pairs	Track Req.	b-tag purity [%] @ eff. 80 %		c-tag purity [%] @ eff. 60 %	
CMOS	std	×	×		82.8		56.4
CMOS	std	0	×		30.4		20.0
CMOS	FPCCDTF	×	×		83.0		58.1
CMOS	FPCCDTF	×	0		82.9		57.4
CMOS	FPCCDTF	0	×	37%	40.8	27%	22.8
CMOS	FPCCDTF	0	0	recover	77.6	recover	49.4
FPCCD	FPCCDTF	×	×		85.5		63.9
FPCCD	FPCCDTF	×	0		84.1		65.5
FPCCD	FPCCDTF	0	×	46%	21.5	23%	18.7
FPCCD	FPCCDTF	0	0	recover	67.8	recover	√ 41.6

- FPCCD is also worse than CMOS with track requirement
 - purity 10 % down @ efficiency 80 % b-tag
 - purity 8 % down @ efficiency 60 % c-tag

Comparison of CPU time and Memory

Values are the mean calculated from 2000 events of $Z \rightarrow bb @ 250 \text{ GeV}$

VTX	tracking	pairs	CPU tim	e [sec/e	Max Memory		
			Silicon Tracking		Full Tracking	[GB/evt]	
CMOS	std	×	0.2		1.1	408.7	
CMOS	std	0	342.0		6.8	561.5	
CMOS	FPCCDTF	×	1/10	7.2	1.0	619.5	
CMOS	FPCCDTF	0		34.0	3.0	709.6	
FPCCD	FPCCDTF	×		5.6	1.0	623.0	
FPCCD	FPCCDTF	0		407.6	27.7	2276.0	

- In the case of CMOS with pairs, FPCCDTrackFinder make CPU time ~1/10.
- In the case of FPCCD, we need to reduce more CPU time.

Summary and Plan

- Summary
 - Flavor tagging performance is degraded by pair-BG tracks
 - Track requirement reduces pair-BG tracks
 - Finally, in the presence of pairs, flavor tagging performance is

VXD	tracking	pairs	Track Req.	b-tag purity [%] @ eff. 80 %	c-tag purity [%] @ eff. 60 %
CMOS	std	0	×	30.4	20.0
CMOS	FPCCDTF	0	0	77.6	49.4
FPCCD	FPCCDTF	0	0	67.8	41.6

- FPCCDTrackFinder reduces CPU time by up to 1/10 in the case using CMOS
- Plan
 - Try to reduce ghost tracks by
 - new track requirement
 - modification of tracking algorithm

Backup

2014/02/26

Pt distribution of tracks in c-jet (without pair-BG)

red: all tracks blue: tracks with purity > 0.75 black: tracks with purity [0, 0.75]

Pt distribution of tracks in c-jet (with pair-BG)

red: all tracks blue: tracks with purity > 0.75 black: tracks with purity [0, 0.75] purple: pair-BG tracks (purity == -1)

almost same as the case of b-jet