Analysis Meeting vol.20

2014.2.24

h->ττ bias

- dPTbal cut has bias for $h \rightarrow \tau \tau$ mode.
- Photons from π^0 decay seems to be reason why such bias exists.
- Bottom figure shows the invariant mass of any 2 photons about major higgs decay mode, and $\tau\tau$ mode's peak nearly m_{π} is sharper than other modes.

photon selection

- For calculation of dPTbal = PTdI PT γ , it is effective for reducing h-> $\tau\tau$ bias to not use photons whose invariant mass (with any another photon) is nearly m_{π}.
- Unfortunately, if I use photon selection for dPTbal, the BG rejection will be quite worse.
- Since photons of Z leptonic decaying BG tend to have energy larger than 60 [GeV], I try to add condition for restriction of using photon of calculation dPTbal.

➡ Don't use photon whose invariant mass is within (0.01, 0.2) and whose energy smaller than 60[GeV].

0.06

0.04

0.02

3 types for checking photon selection

- Type "甲"
 - $\delta PT_{bal} < -10, 10 < \delta PT_{bal}$
 - M_{IIγ} < 200
 - This can reduce $\mu\mu\gamma$ BG, but has bias in h-> $\tau\tau$ mode
- Type "乙"
 - ◆ Using cut is same as "甲", but consider the photon selection
 - $M_{2\gamma} < 0.01, 0.2 < M_{2\gamma}$
 - This can repress bias, but $\mu\mu\gamma$ eff. will be worse.
- Type "丙"
 - ◆ Using cut is same as "甲", and consider the limited photon selection
 - $M_{2\gamma} < 0.01, 0.2 < M_{2\gamma}$
 - $E_{\gamma} > 60$
 - This type is compatible with both reducing bias and $\mu\mu\gamma$ BG

Comparing results

 $\mathsf{PT}_{\mathsf{bal}} < -10, \ 10 < \delta \mathsf{PT}_{\mathsf{bal}}$ $\mathsf{M}_{\mathsf{W}} < 200$

	efficiency of δPT_{bal} cut				Results after all cut		
	bb	ττ	CC	z_l (BG)	purity	δ _σ	δ_{m}
甲型	99.4%	95.3%	99.0%	14.5%	24.8%	3.72%	37.1MeV
乙型	99.8%	98.0%	99.6%	62.8%	20.3%	3.93%	39.1MeV
丙型	99.8%	97.8%	99.6%	22.2%	23.9%	3.74%	37.0MeV

Type "丙" seems to be better to use.

 If I set dPTbal cut looser (such as (-5, 5) is restricted), h->ττ bias can be smaller (~1%), but cut eff. will be worse so that stat. error will increase.