



#### 9 mA Meeting

# Status and Plans at KEK STF: The Quantum Beam Project and STF-2

#### **Mathieu Omet**

Sokendai - The Graduate University for Advanced Studies KEK - High Energy Accelerator Research Organization Japan

### Content





- The Qantum Beam (QB) Project at STF
- Test Operations during the QB Project
- STF-2
- Summary





- The Qantum Beam (QB) Project at STF
- Test Operations during the QB Project
- STF-2
- Summary

# Superconducting RF Test Facility (STF) Quantum Beam Project (QBP)

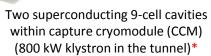




#### STF

 Development and demonstration of high gradient superconducting accelerator technology aimed for ILC Normal conducting photocathode RF gun\* (5 MW Klystron on ground level)

KEK






Beam dump

*QBP*(Apr. 2012

—
Mar. 2013)



Optical cavity for X-ray creation

\*operated using digital LLRF control techniques

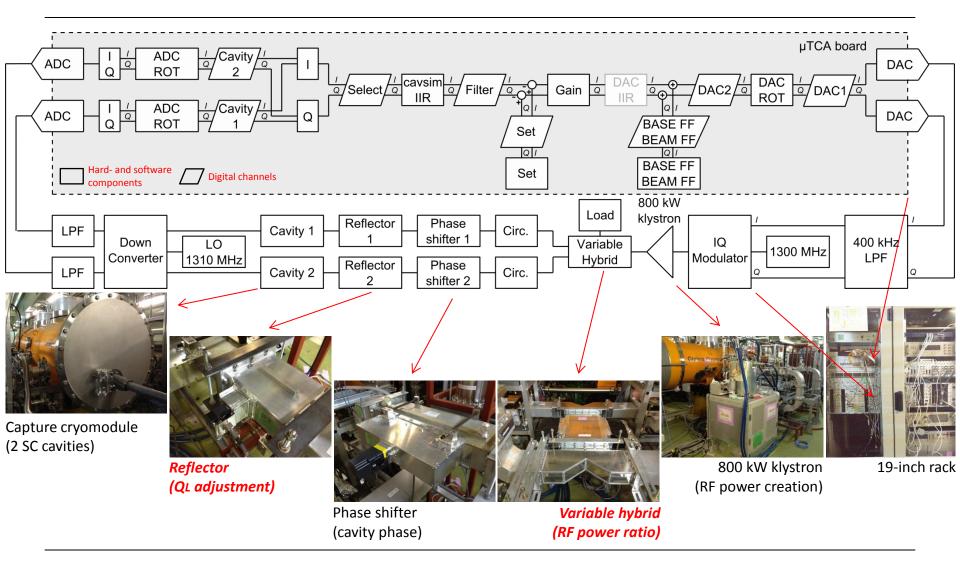
QBP



X-ray detector

**QBP** 

 Demonstration of high brightness X-ray generation by inverse laser Compton scattering.


Cavity gradient:  $(20\pm20\%)$  MV/m Loaded Q: 3e6

Bunch number: 162500 **Bunch spacing:** 162.5 MHz Operation mode: pulsed Beam current: 10 mA Repetition rate: 5 Hz 40 MeV Energy: Pulse length: 62 pC 1 ms Charge:

# **LLRF Control Loop**











- The Qantum Beam (QB) Project at STF
- Test Operations during the QB Project
- STF-2
- Summary

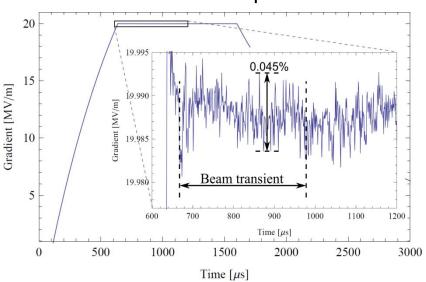
## **Nominal Operation**





| R | F. | Ρ | a | r | a | m | P | te | r |
|---|----|---|---|---|---|---|---|----|---|
|   |    |   | u |   | u |   |   |    | • |

 $V_{Cav1} = 16 MV/m$ 


 $V_{Cav2} = 24 MV/m$ 

 $Q_{L1} = 3e6$ 

 $Q_{L2} = 3e6$ 

Filling time =  $540 \mu s$ 

\*Beam compensation active



| Beam | Parai | meter |
|------|-------|-------|
|------|-------|-------|

Pulse Length =  $615 \mu s$ 

Current = 6.6 mA

ILC Stability
Requirements

 $\Delta A/A = 0.07\%$ 

 $\Delta \Phi = 0.24^{\circ}$ 

| Beam               | 6.6mA*<br>(60 mins) | Off<br>(20 mins) |  |
|--------------------|---------------------|------------------|--|
| ΔA/A (cav1)        | -                   | 0.042%           |  |
| ΔA/A (cav2)        | -                   | 0.045%           |  |
| ΔA/A (vector sum)  | 0.009%              | 0.008%           |  |
| Δφ (cav1)          | -                   | 0.027°           |  |
| Δφ (cav2)          | -                   | 0.021°           |  |
| Δφ (vector<br>sum) | 0.009°              | 0.008°           |  |

All stabilities are estimated for the beam transient time.

# High Q<sub>L</sub> Operation





### *ILC* requirements

- Operation intended at Q<sub>L</sub> values in a range of 3e6 to 10e6
- Bandwidth becomes very narrow (e.g. 32Hz at Q<sub>L</sub>=2e7), detune becomes severe
- Microphonics maybe problematic to deal with
- Demonstration only possible at KEK STF due to wide QL range (2e6~5e7)

### High Q∟ operation at STF

- Q<sub>L</sub> adjustment with waveguide reflectors
- Automated detune compensation via piezo tuners

# High Q<sub>L</sub> Operation





#### RF Parameter

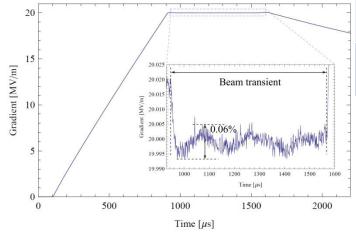
 $V_{Cav1} = 20 MV/m$ 

 $V_{Cav2} = 20 MV/m$ 

 $Q_{L1} = 2e7$ 

 $Q_{L2} = 2e7$ 

Filling time =  $800 \mu s$ 


\*Beam compensation

active

Beam Parameter

Pulse Length =  $615 \mu s$ 

Current = 6.1 mA

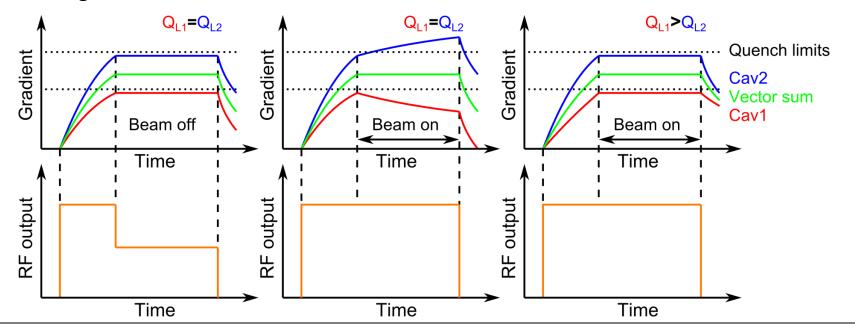


|                    | Hig                  | h Qı             | Nominal              |                  |  |
|--------------------|----------------------|------------------|----------------------|------------------|--|
| Beam               | 6.1 mA*<br>(60 mins) | Off<br>(20 mins) | 6.6 mA*<br>(60 mins) | Off<br>(20 mins) |  |
| ΔA/A (cav1)        | 0.121%               | 0.030%           | -                    | 0.042%           |  |
| ΔA/A (cav2)        | 0.160%               | 0.032%           | -                    | 0.045%           |  |
| ΔA/A (vector sum)  | 0.011%               | 0.008%           | 0.009%               | 0.008%           |  |
| Δφ (cav1)          | 0.033°               | 0.027°           | -                    | 0.027°           |  |
| Δφ (cav2)          | 0.028°               | 0.027°           | -                    | 0.017°           |  |
| Δφ (vector<br>sum) | 0.015°               | 0.014°           | 0.009°               | 0.008°           |  |

All stabilities are estimated for the beam transient time.

- Detuning stayed constant during 1h operation
  - → Microphonics are not severe
- Fulfills ILC stability requirements ( $\Delta A/A = 0.07\%$ ,  $\Delta \varphi = 0.24$ )

## PkQL Control






*ILC requirement: Operation with flat flattops* 

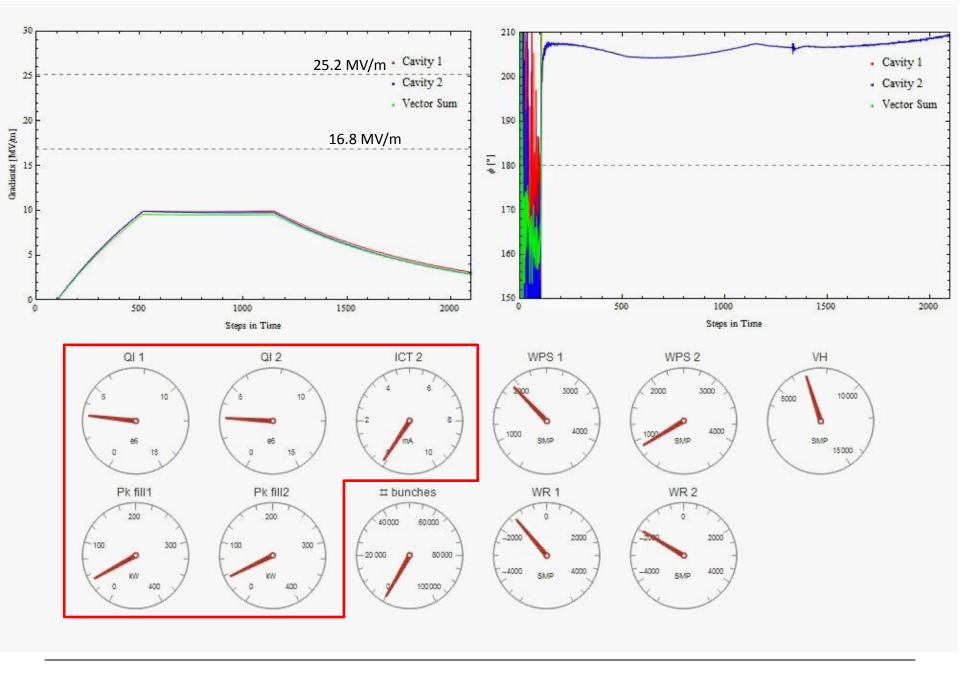
- Beam optics requirements for stable beam acceleration (Cavity tilts and RF fluctuations induce transverse beam orbit changes)
- High gradient operation near quench limit during whole flattop for all cavities

Operation of multiple cavities driven by a single klystron combined with beam loading leads to gradient tilts  $\rightarrow$  **P**<sub>k</sub>**Q**<sub>L</sub> **Control** 



## PkQL Control Goal






### *ILC* requirements

- Fully automated P<sub>k</sub>Q<sub>L</sub> operation (~16000 cavities)
- Cavity gradient spread ±20% (e.g. 16 MV/m and 24 MV/m)
- Cavity gradients 5% below of respective quench limits
- Cavity gradients must never exceed quench limits
- Cavity vector sum stabilities  $\Delta A/A = 0.07\%$  and  $\Delta \phi = 0.24^{\circ}$

### Steps to engage in PkQL operation

- Determination of working point for adjustment of cavity RF input powers (Pk) and QL values respective to the beam current
- Fully automated PkQL setting procedure



# PkQL Operation Stabilities





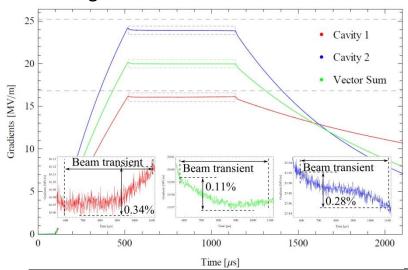
#### RF Parameter

 $V_{Cav1} = 16 MV/m$ 

 $V_{Cav2} = 24 MV/m$ 

 $Q_{L1} = 9e6$ 

 $Q_{L2} = 3e6$ 


Filling time = 410  $\mu$ s

\*Beam compensation active

Beam Parameter

Pulse Length =  $615 \mu s$ 

Average current = 6.4 mA



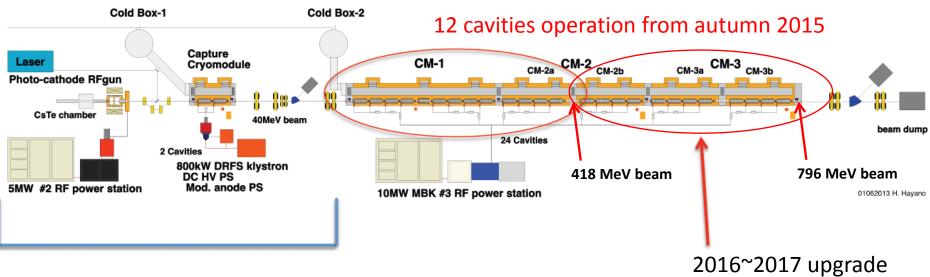
|                    | PkQL                 | Nominal              |                  |  |
|--------------------|----------------------|----------------------|------------------|--|
| Beam               | 6.4 mA*<br>(60 mins) | 6.6 mA*<br>(60 mins) | Off<br>(20 mins) |  |
| ΔA/A (cav1)        | 0.041%               | -                    | 0.042%           |  |
| ΔA/A (cav2)        | 0.031%               | -                    | 0.045%           |  |
| ΔA/A (vector sum)  | 0.009%               | 0.009%               | 0.008%           |  |
| Δφ (cav1)          | 0.042°               | -                    | 0.027°           |  |
| Δφ (cav2)          | 0.031°               | -                    | 0.021°           |  |
| Δφ (vector<br>sum) | 0.009°               | 0.009°               | 0.008°           |  |

All stabilities are estimated for the beam transient time.

- First actual PkQL operation
- Vector sum stabilities comparable with nominal operation
- Fulfills ILC stability requirements ( $\Delta A/A = 0.07\%$ ,  $\Delta \varphi = 0.24$ )






- The Qantum Beam (QB) Project at STF
- Test Operations during the QB Project
- STF-2
- Summary

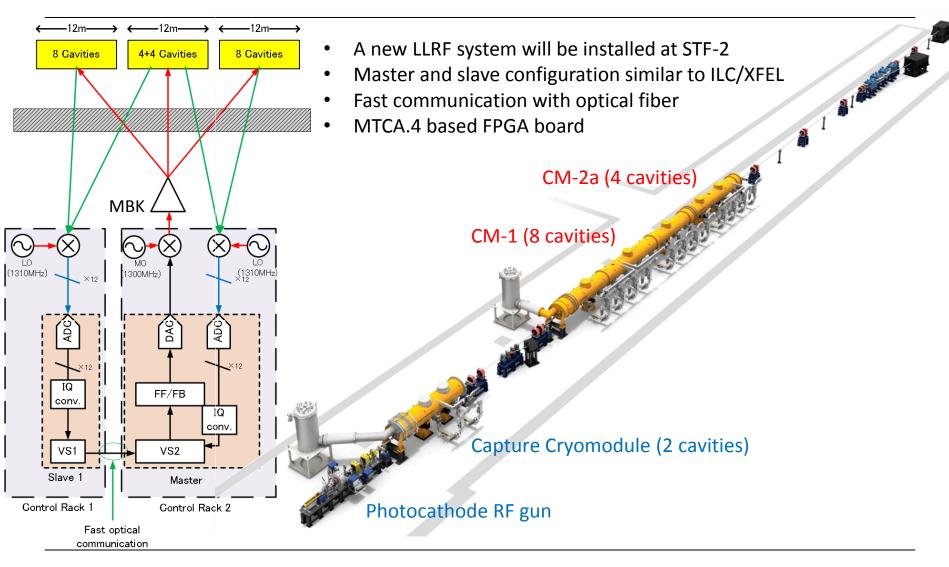
## Schematic of STF-2





#### STF Phase-2 Accelerator Plan

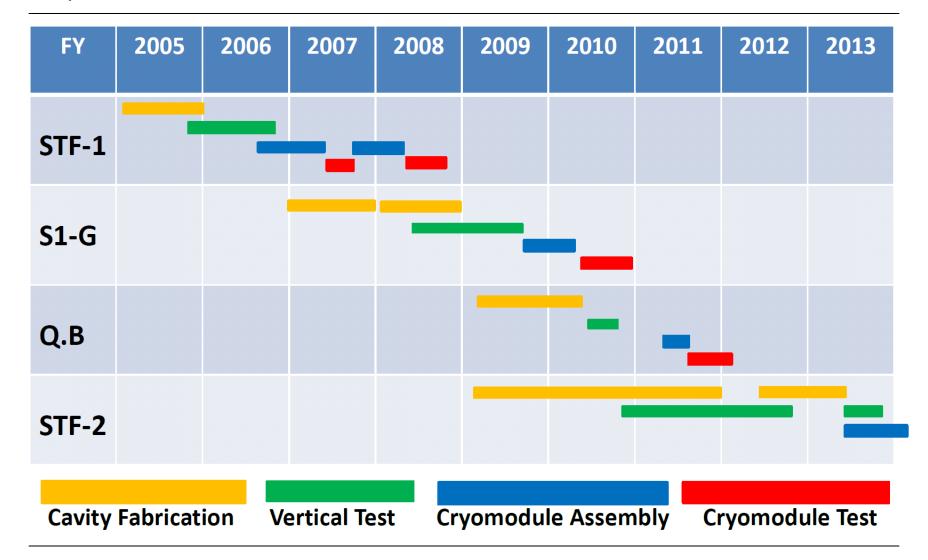



#### STF-2 consists of

- RF gun (~9 mA)
- Capture cryomodule (2 cavities)
- 12 cavities (CM-1, CM-2a)
- Additional 12 cavities (CM-2b, CM-3) by 2017

## **RF** Configuration








# Time Schedule of STF-1, S1-Global, QB and STF-2







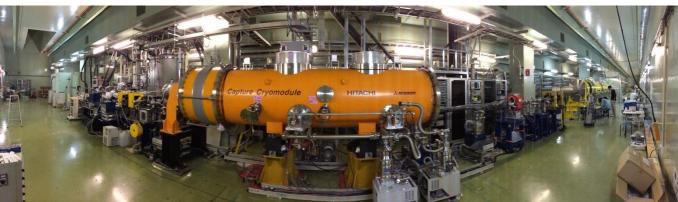
## Schedule of STF-2



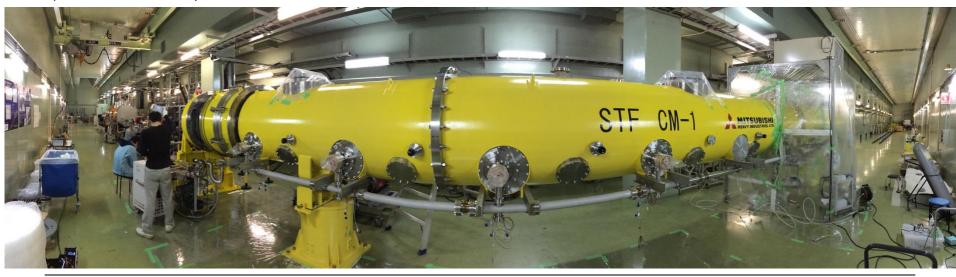


- 2014: Installation of cryomodule, RF system
- ~April 2015: High power test of 12 cavities
- ~September 2015: Beam operation
- 2016~2017 (?): Installation of additional 12 cavities

# Pictures as of 2014/02/17 (Mon)







10 MW MBK (ground floor)

RF Gun and Capture Cryomodule (accelerator tunnel)





CM-1 (accelerator tunnel)







- The Qantum Beam (QB) Project at STF
- Test Operations during the QB Project
- STF-2
- Summary

# **Summary**



- QB Project: RF Gun, 2 SCCs driven by single 800 kW klystron in DRFS scheme, beam energy up to 40 MeV
- Successful demonstration of high Q<sub>L</sub> (2e7) operation with stabilities comparable to nominal operation
- First successful demonstration of an automated ILClike PkQL operation with stabilities comparable to nominal operation
- STF-2: RF Gun, 2 SCCs in the CCM, 12 SCCs in CM-1 and CM-2a driven by a single 10 MW MBK, beam energy up to 418 MeV, beam operation from Sep 2015
- Upgrade 2016~2017 with additional 12 SCCs





# Thank you very much for your attention!