Signal efficiency with recoil cut

recoil> 110 GeV

decay mode	counts	ZZ cut	WW cut	both cut	recoil cut	(\%)
qqH all eLpR	46,339	41,127 888%	42.508 91.7% 1.8	38,269 82.6%	31,005	66.9% $\pm 0.2 \%$
qqH all eRpL	31,312	27,898 89,1\%		22,568 286\% 826\%	20,942	60.9\% 66.9\% +0.3
H -> bb eLpR	25,713	27.815 88.78 8.8		21,255 827% 88	17,408	67.7\% +0.3\%
H \rightarrow b bb eRpL	17,271	158.314 887\% 88,	15.917 1229	14,249 825 88	11,672	67.6\% +0.4\%
H -> WW eLpR	10,627	8.746 88.94 8.9	92,659 9.0% 1.02	82.750 8.95 8.90	7,262	+0.3\% 68.3\% ± 0.5
H \rightarrow WW eRpL	7,220	6,430 890\%	9,562 $.909 \%$.909	5.923 820% 8.0	4,937	68.4\% +0.5\%
H \rightarrow Z Z l eLpR	1,376	1,214 88.2% 8.28	1,264 91.96 9.	1,131 822%	939	68.2\% $\pm 1.3 \%$ a
H \rightarrow Z ZZ eRpL	938	$\begin{array}{r}8224 \\ 8789 \\ \hline 88\end{array}$	867	7274 8756	643	68.6\% 68.5\% +15\%
$\mathrm{H}->r r$ eLpR	172	161	$\frac{26.401}{161}$	$\frac{64.50}{152}$	104	60.5\% t37\%
$\mathrm{H} \rightarrow r$ r eRpL	123	$\begin{aligned} & 1.50513 \\ & 91.96 \end{aligned}$	$\begin{gathered} 10009 \\ \hline 91.96 \end{gathered}$		74	60.2\% $\pm 4.4 \%$

more detail

recoil>1 10GeV

decay mode	counts	ZZ cut	WW cut	both cut	recoil cut	(\%)
$\mathrm{H} \rightarrow$ WW eLpR	10,627	$\begin{aligned} & \hline 9,444 \\ & 88.9 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,659 \\ & 91.0 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,705 \\ & 81.9 \% \\ & \hline \end{aligned}$	7,262	$\begin{aligned} & \hline 68.3 \% \\ & \pm 0.5 \% \\ & \hline \end{aligned}$
$\mathrm{H} \rightarrow$ WW eRpL	7,220	$\begin{aligned} & \hline 6,430 \\ & 89.0 \% \\ & \hline \end{aligned}$	$\begin{array}{r} 6,562 \\ 90.9 \% \\ \hline \end{array}$	$\begin{array}{r} 5,923 \\ 82.0 \% \\ \hline \end{array}$	4,937	$\begin{aligned} & \hline 68.4 \% \\ & \pm 0.5 \% \\ & \hline \end{aligned}$
H->WW->hadronic L	$\begin{array}{r} 4,888 \\ 45.9 \% \\ \hline \end{array}$	$\begin{gathered} 4,304 \\ 88.0 \% \end{gathered}$	$\begin{array}{r} 4,568 \\ 93.5 \% \\ \hline \end{array}$	$\begin{array}{r} 4,054 \\ 82.9 \% \\ \hline \end{array}$	3,243	$\begin{array}{r} \hline 66.3 \% \\ \pm 0.7 \% \\ \hline \end{array}$
H->WW->hadronic R	$\begin{array}{r} 3,305 \\ 45.8 \% \\ \hline \end{array}$	$\begin{aligned} & \hline 2,911 \\ & 88.1 \% \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 3,090 \\ 93.5 \% \end{array}$	$\begin{array}{r} \hline 2,745 \\ 83.1 \% \\ \hline \end{array}$	2,198	$\begin{array}{r} 66.5 \% \\ \pm 0.8 \% \\ \hline \end{array}$
H->WW->leptonic L	$\begin{aligned} & 1,068 \\ & 10.1 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,068 \\ & 100 \% \\ & \hline \end{aligned}$	$\begin{array}{r} 1,059 \\ 99.2 \% \\ \hline \end{array}$	$\begin{array}{r} 1,059 \\ 99.2 \% \\ \hline \end{array}$	980	$\begin{array}{r} 91.8 \% \\ \pm 0.8 \% \\ \hline \end{array}$
H->WW->leptonic R	$\begin{gathered} 750 \\ 10.4 \% \\ \hline \end{gathered}$	$\begin{gathered} 749 \\ 99.9 \% \\ \hline \end{gathered}$	$\begin{gathered} 744 \\ 99.2 \% \\ \hline \end{gathered}$	$\begin{gathered} 744 \\ 99.2 \% \\ \hline \end{gathered}$	686	$\begin{array}{r} 91.5 \% \\ \pm 1.0 \% \\ \hline \end{array}$
H->WW->semileptonic	$\begin{aligned} & 4,671 \\ & 44.0 \% \\ & \hline \end{aligned}$	$\begin{gathered} 4,073 \\ 87.2 \% \\ \hline \end{gathered}$	$\begin{gathered} 4,032 \\ 86.3 \% \\ \hline \end{gathered}$	$\begin{aligned} & 3,592 \\ & 76.9 \% \\ & \hline \end{aligned}$	3,040	$\begin{array}{r} 65.0 \% \\ \pm 0.7 \% \\ \hline \end{array}$
H->WW->semileptonic	$\begin{array}{r} 3,166 \\ 43.8 \% \\ \hline \end{array}$	$\begin{gathered} \hline 2,769 \\ 87.5 \% \\ \hline \end{gathered}$	$\begin{array}{r} \hline 2,728 \\ 86.2 \% \\ \hline \end{array}$	$\begin{aligned} & \hline 2,434 \\ & 76.9 \% \\ & \hline \end{aligned}$	2,053	$\begin{array}{r} \hline 64.8 \% \\ \pm 0.8 \% \\ \hline \end{array}$

Outlook

- look H->ZZ decay as well.
- leptonic mode is not affected by cut at all.
- bb/WW are not consistent within efficiency uncertainty. -> should be investigated.
- analyze 2-jets and 3-jets clustering to decide cut box for semi-leptonic ZZ/WW.

