HigGs self-coupling analysis WITH H \rightarrow WW*

Masakazu Kurata
03/07/2014

Status

- $\mathrm{dE} / \mathrm{dx}$ - working with Astrid to digitize the $\mathrm{dE} / \mathrm{dx}$ correctly
- Shower profile - going on
- Correct some bugs
- Start to apply shower profile to lepton ID
- Trying to integrate Ecal/Hcal correctly
- So far, Hcal is not considered correctly
- Not yet included because there are some problems
- Trying jet paring using Bayesian approach
- Include angle information
- Jet pairing for WW $\rightarrow \mathrm{jjjj}$
- Jet pairing for $\mathrm{ZH} \rightarrow \mathrm{bbbb}$

- working with Astrid to digitize the $\mathrm{dE} / \mathrm{dx}$ correctly
- Check the landau tail effect
- Does Landau tail effect input correctly on simulation?
- Check the fluctuation of $\mathrm{dE} / \mathrm{dx}$ - not yet
- With several particles and momentum range
- dE/dx definition:
- $\frac{d E}{d x}=\frac{\text { energy deposit }}{\text { flight path in the hit (TPC) }}$
- dE/dx can be calculated at any hit point
- Truncated mean is calculated as track dE/dx $\left\langle\frac{d E}{d x}\right\rangle=\sum_{i}^{n} \frac{d E_{i}}{d x_{i}}$ upper 30%, lower 8% hits are discarded to avoid Landau tail
\rightarrow optimization is necessary

Effect of Landau tail

- Landau tail effect
- Mean of w/w.o. truncation
- Tail can be seen in the case of no truncation

But...

- The distribution doesn't fit well to Landau function...
- Why?
- Simulation is wrong?
- So far, checking bugs...

SHOWER PROFILE

FAKE LEPTON CHECK

- Check the particle type of the fake lepton candidates
- Electron type
- No difference found - so far all-in-one as fake leptons

Shower profile tried for Lepton ID

- Electron type

Isolated Lepton
Fake Lepton(Hadron track) ※no soft lepton included

LEPTON ID USING SHOWER PROFILE

- Try to include shower profile to lepton ID
- Lepton ID is based on the likelihood method
- $L=\frac{\Pi s}{\Pi s+\Pi b}$ s and b are the p.d.f.s of signal and backgrounds
- Compare the results at same signal efficiency
- Same signal efficiency as the cut based lepton ID
- Signal efficiency is $\sim 98 \%$
- My target is the detection of the leptons from $\mathrm{HH} \rightarrow(\mathrm{bb})(\mathrm{WW}) \rightarrow$ bblvjj
- Preliminary results - electron type

	Cut based	Old likelihood	w/ Shower profile
signal	98.4	98.1	98.1
HH $\rightarrow(\mathrm{bb})(\mathrm{bb})$	-	2.3	1.9

- Background rejection improves well (~19\%)
- Need to check with all hadronic top events

JET PAIRING

Naïve Bayes

- Bayesian probability - posterior probability when x is given $P(A \mid x)=\frac{P(x \mid A) \cdot P(A)}{P(x)}$
$\mathrm{P}(\mathrm{x} \mid \mathrm{A})$: likelihood(probability when x is given from class A$)$
$\mathrm{P}(\mathrm{A})$: prior probability of class A
$\mathrm{P}(\mathrm{x})$: probability of x (sum of all the classes)
- Bayesian classifier - regard x as the element of class A,
- When $\mathrm{P}(\mathrm{A} \mid \mathrm{x})$ is largest of all the classes
- e.g. x belongs to A when $P(A \mid x)>P(B \mid x), P(A \mid x)>P(C \mid x)$, etc.

Jet Paring using naïve Bayes

- Preparing binary classifier for all the combinations
- e.g.) case of $(\mathrm{bb})(\mathrm{bb})$ pairing - there are 6 combinations $(1$ is true (A) and 5 are false combinations)
- 5 false combinations are ordered using cosine similarity - grouping in descending order(B1, B2,B3,B4,B5):

$$
\operatorname{sim}=\frac{v 1 \cdot v 2}{|v 1||v 2|}
$$

- Preparing 5 binary classifiers - true combi. vs. 5 groups of false combi.
- Likelihood is based on the linear discriminant analysis and make p.d.f.
- True combination is regarded as the one which is:
- $\mathrm{P} 1(\mathrm{~A} \mid \mathrm{x})>\mathrm{P} 1(\mathrm{~B} 1 \mid \mathrm{x}), \mathrm{P} 2(\mathrm{~A} \mid \mathrm{x})>\mathrm{P} 2(\mathrm{~B} 2 \mid \mathrm{x}), \mathrm{P} 3(\mathrm{~A} \mid \mathrm{x})>\mathrm{P} 3(\mathrm{~B} 3 \mid \mathrm{x}), \mathrm{P} 4(\mathrm{~A} \mid \mathrm{x})>\mathrm{P} 4(\mathrm{~B} 4 \mid \mathrm{x}), \mathrm{P} 5(\mathrm{~A} \mid \mathrm{x})>\mathrm{P} 5(\mathrm{~B} 5 \mid \mathrm{x})$
- If there is no good combination or are some good combinations, the best combination is defined as:
- Maximum of

$$
\frac{P 1(A \mid x) \cdot P 2(A \mid x) \cdot P 3(A \mid x) \cdot P 4(A \mid x) \cdot P 5(A \mid x)}{P 1(B 1 \mid x) \cdot P 2(B 2 \mid x) \cdot P 3(B 3 \mid x) \cdot P 4(B 4 \mid x) \cdot P 5(B 5 \mid x)}
$$

PreLiminary results

- WW \rightarrow jjjj pairing case
- Also check maximum likelihood using LDA
- $\chi^{2}=-2 \log B W\left(m(j 1 j 2) \mid m_{W}, \Gamma_{W}\right)$

Pairing type	X^{2}	Just likelihood	Naïve Bayes
True positive(\%)	60.2	70.1	74.7

- Good improvement can be obtained!
- $\mathrm{ZH} \rightarrow(\mathrm{bb})(\mathrm{bb})$ case
- $\chi^{2}=\frac{\left(m_{1}-m_{Z}\right)^{2}}{\sigma_{Z}^{2}}+\frac{\left(m_{2}-m_{H}\right)^{2}}{\sigma_{H}^{2}}$

Pairing type	X^{2}	Just likelihood	Naive Bayes
True positive(\%)	56.6	59.8	59.8

- Improve slightly thanks to the angle information
- But, need more improvement...
- No improvement even if using naïve Bayes...

