

- Annual Conference of German Physics Society (DPG)
 - Section Particle Physics
 - 24. 28. March in Mainz
 - Every member is allowed to give a talk
 - ~1000 contributions
 - Many parallel sessions
 - Also invited talks and plenar sessions
- This talk:
 - TPC 2 session
 - Abstract: http://www.dpg-verhandlungen.de/year/2014/conference/mainz/part/t/session/33
 - Group report: ~15-17 minutes talk + 3-5 minutes for questions
 - Idea: want to intoduce LCTPC-pixel collaboration
 - Present our work (with focuss on my/Bonn activities)
 - Hope: find some new members ;)

A pixel TPC for the Linear Collider:

Towards a demonstrator module

Michael Lupberger

GEFÖRDERT VOM

Bundesministeriun ür Bildung ınd Forschung University of Bonn On behalf of the LCTPC-pixel Collaboration

Pixel-TPC Meeting 13.03.2014

- LCTPC-pixel collaboration
- Timepix Chip
- 2013 Testbeam and data analysis
- Simulation
- Readout system
- Demonstrator module

LCTPC-pixel collaboration

- LCTPC collaboration:
 - Develop a TPC for physics up to 1 TeV (at the ILC)
 - Groups from America, Europe and Asia
 - Several readout concepts using GEM/Micromegas
- LCTPC-pixel
 - R&D towards a pixel-TPC: MPGD + pixel readout
 - Groups:
 - NIKHEF: Module construction
 - University of Kiew: Simulation
 - CEA Saclay / DESY: Data analysis
 - Uni Bonn: Module construction, readout system, data analysis
 - Uni Siegen: Data analysis
 - Goal: build a demonstator module for a pixel-TPC

• Setup at DESY

Timepix chip

- Universal readout chip
- Properties:
 - active surface: 1.4 x 1.4 cm²
 - pixel size 55 x 55 μm²
 - 256 x 256 pixel array
 - 14 bit counter in each pixel (ToA or ToT)
 - Noise threshold $\sim 500e^{-1}$ (ENC $\approx 90e^{-1}$)

Michael Lupberger Pixel-TPC Meeting 13/03/2014

Setup at DESY

March/April 2013: 2 LCTPC octoboard modules

- Different amplification structures: GEM / InGrid
- Test of readout system
- Readout rate: 2.5 Hz; 40MHz clock
- Electron beam of up to 6 GeV
- Gas: Ar:CF4:iC4H10 (95:3:2) = T2K gas
- ~ 2 Mio. frames recorded, including B = 1 T
- Extensive testbeam program
- Preliminary data analysis in MarlinTPC Robert Menzen

2013 test beam

200

Reconstructed tracks

Transverse spatial resolution

Data analysis

Andrii Chaus (DESY/CEA Saclay):

Processing Octoboard test beam data

- MAFalda analysis framework ok for fast analysis at testbeam
 - Track reco based on raw data, no GEAR info
 - Field distortions, drift velocity, residuals, diffusion
- MarlinTPC for real analysis (using GEAR information)
 - Processors for octoboard analysis
 - Analysis chain setup ongoing

Amir Shirazi (Uni Siegen):

Just started to set up and learn MarlinTPC

Simulation

Oleksiy Fedorchuk (Uni Kiew) : Octoboard simulation

- Single octoboard simulation
 - Successfully modelled
 - Field distortions
 - Simulated occupancy similar to data
 - Impact of shifted chips
- Next step:
 - Include B field
 - 100 chip module

0.45

0.4

0.35

0.3

0.25

E

0.05 mm gap

Michael Lupberger Pixel-TPC Meeting 13/03/2014

-100

-200

-250

-300 -350

-400

12

Detector construction

Jan Timmermans (NIKHEF) : 2 Octopuce testbeam

Testbeam with 2 Octoboards @ LP

• Plan for module layout + readout

			0		
	PCB		<u>Common atom</u>		
	Т?		Connector		
	Ingrid		CO2 cooling tul	be	
	FPGA				universitätbo

Bonn group activities

Data analysis

Martin Rogowski: A new tracking algorithm

Reinvestigate field distortions of Roberts analysis

• Algorithm from Forward Tracking Detector for ILD

Data analysis and simulation

Martin Rogowski: A new tracking algorithm

Listen to his talk !

Scalable Readout System (RD51, CERN)

Chain: Chip – Adapter card+FEC – Computer

SRS with Timepix chip

Adapter card Type A

JTAG program

SRS FEC with Virtex 5 FPGA

Timepix chip on carrier

Intermediate board (can carry 8 daisy-chained chips)

Ethernet to PC

New Intermediate board

I2C: standard for small network. Signals: scl (clock), sda (data) Originally between PCBs next to each other. Several meters distance using extenders.

universität**bonn**

Status Timepix+SRS Readout

- Test of FPGA Firmware:
 - I2C interface ready
- Test of new components finished
 - I2C network ok (DACs, ADC, expander work)
 - DDR2 Ram ok
 - LVDS driver work
 - => chip can be operated, data taking ok, even for 8 chips
- Software implementation finished (ADC readout for DAC scan, automatic calibration with test pulses from multiplexer)
- Redesign of intermediate board and A Card for scale-up

LP module: next steps

- ~100 chip module
- Progress depends on many factors
 - InGrids
 - Man power
 - DESY testbeam schedule
- Project: test a 32 InGrid board in September/October
 - Similar design as 8 InGrid module
 - Expandable to 96 InGrids
- Mechanical construction (Bachelor student: Johann Tomtschak)
 - CAD drawings in SolidWorks
 - Construction of light LP frame in workshop
 - Construction of chip support structure in workshop
 - Use water cooling

Michael Lupberger Pixel-TPC Meeting 13/03/2014

LP module: next steps

- ~100 chip module
- Powering (Bachelor student: Kathrin Kohl)
 - Was already critical for a single octoboard
 - Low voltage supply for 4/12 octoboards?
 - High voltage supply
- PCB layout (Jochen Kaminski)
 - Depends on powering
 - Space is limited
 - Need many HDMI cables
- InGrid bonding, testing, quality control, calibration

27

LCTPC-pixel collaboration is very active:

- Analysis of 2013 testbeam data
- Simulation of field distortions
- Development of readout system
- Design of a 32 / 96 chip module

=> Demonstrator for a pixel TPC (for ILD @ ILC)

universitätbo

Schedule for 2014

• Additionally:

- Need/would like to have a master student for full analysis
- Data analysis of new testbeam data
- 96 chip module test in 2015 ?

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Octobo HDMI Virt	ard cap board to ex 6 bo	oability, esting, ard	Firmy for octobo FE	Firmware for 4 ctoboards/ FEC Testbeam Prepera				m, ation	Dat	ıta analysis		
Michael Lupberger												
PCB single	finalisa e/octobo	ation bards	32 chip module construction					Testt	96 chip module Testbeam _{co} nstruction			
Jochen Kaminski, Michael Lupberge								20	14/			
			Johann Tomtschak Kathrin Kohl					2015				
Track reconstruction algorith												
2013 data analysis with new algorithm											÷.	
Martin Rogowski												
							Full 2	2013 da	ata anal	ysis?		
									sier slude	III?		

We can provide soon:

- SRS (A card) with full functionality (for MUROS compatible intermediate board)
 - Users with SRS can plug and play Timepix
 - Users can use MUROS or SRS for same detector
 - Comparability study, documentation
- V6 evaluation board (VHDCI cables MUROS compatible):
 - Updated adapter board, I2c network tested
 - ADC, DAC control and readout with i2c (firmware, software)
 - Users with V6 board can plug and play Timepix
 - Users can use MUROS or SRS for same detector
 - Comparability study, documentation:
 - Use in CAST

Xilinx Evaluation board

Virtex 6 FPGA

Preliminary Analysis: Cuts

Dataset for first analysis:

z-scan, B=0 T,
$$E_{Drift}$$
 = 230 V/cm (D_T = 311 µm/ \sqrt{cm})

 \Rightarrow tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track

Preliminary Analysis: Cuts

Dataset for first analysis:

z-scan, B=0 T, E_{Drift} = 230 V/cm (D_T = 311 µm/ \sqrt{cm})

 \Rightarrow tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track
- Only single track events

Preliminary Analysis: Cuts

Dataset for first analysis:

z-scan, B=0 T, E_{Drift} = 230 V/cm (D_T = 311 µm/√cm)

 \Rightarrow tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track
- Only single track events

- Entries 400 Preliminary 350 300 250 200 Chip 150 100 50 0_50 -40 -30 -20 -10 0 10 20 30 40 50 d_o in mm
- Tracks centred on lower chip row (z dependent)

Preliminary z-scan results

