CFS-ADI Joint Meeting/20140408

Cryogenic Cavern in Mountainous Region - Review

Cryogenic system configuration
Helium inventory

NAKAI Hirotaka

Overall Layout for Cryogenic Systems

Cited from ILC-TDR

		40–80 K	5–8 K	2 K
Predicted module static heat load	(W/module)	75.04	10.82	1.32
Predicted module dynamic heat load	(W/module)	58.80	5.05	9.79
Number of cryomodules per cryogenic unit		156 / 189	156 / 189	156 / 189
Non-module heat load per cryo unit	(kW)	0.7 / 1.1	0.14 / 0.22	0.14 / 0.22
Total predicted heat per cryogenic unit	(kW)	21.58 / 26.40	2.61 / 3.22	1.87 (2.32)
Efficiency (fraction Carnot)		0.28	0.24	0.22
Efficiency in Watts/Watt	(W/W)	16.45	197.94	702.98
Overall net cryogenic capacity multiplier		1.54	1.54	1.54
Heat load per cryogenic unit including multiplier	(kW)	33.23 / 40.65	4.03 / 4.96	2.88 / 3.57
Installed power	(kW)	547/669	797/981	2028 / 2511
Installed 4.5 K equiv	(kW)	2.50 / 3.05	3.64 / 4.48	9.26 / 11.47
Percent of total power at each level		0.16	0.24	0.60
Total operating power for one cryo unit based on p	MW)	2.63 / 3.24		
Total installed power for one cryo unit (MW)			3.37 / 4.16	
Total installed 4.5 K equivalent power for one cryo	unit (kW)		15.40 / 19.01	

flat / mountain topographies

Cited from ILC-TDR

CERN-LHC Cryogenic System

Ph. Lebrun, Magnet Technology for Fusion Training School, 2009

INEAR COLLIDER COLLABORATION

• The helium compressor is installed in far end of the cryogenic cavern Location of the cavern is ~ 60 m 26 m away from the main tunnel to avoid the vibration 6 m Compressor + Motor 5 m x 1.9 m x 2 m 12.5 m Helium compressors for 18 kW Helium Refrigerator / CERN LHC Hosoyama, International Workshop on Linear Colliders 2010

3

CERN-LHC 18 kW Refrigerator Compressors

Ph. Lebrun, Magnet Technology for Fusion Training School, 2009

- 4K cold boxes will be installed in the large caverns at the end of access.
- Two 2K cold boxes must be installed in the caverns at 5 km intervals and each 2K cold box supports cooling of ~2.5 km long cryogenic unit.
- Long multi-transfer line must be installed in the main tunnel to connect 2K and 4K refrigerators.
- We must carry in the 2K cold box and distribution box through main tunnel.

Hosoyama, International Workshop on Linear Colliders 2010

Volumes	modules	Helium (liquid liters equivalent)	Tevatron Equiv.	LHC Equiv.
One module	1	346		
String (flat) String (mountainous)	12 9	4153 3115	0.07 0.05	
Cryogenic unit (flat) Cryogenic unit (mountainous)	156 189	54 000 65 400	0.9 1.1	0.054 0.065
ILC Main Linacs	1825	632 000	10.5	0.63

Cited from ILC-TDR

Required Liquid Helium ~ 650,000 L

1) Storage as Gas Standard gas storage tank 100 m³ (Diameter 3 m x Length 15 m) 1 L Liquid helium ---> 0.7 Nm³ Gas helium 100 m³ x 18 (pressure ratio) = 1800 Nm³ ---> ~ 2,600 L/unit ~ 100 m³/unit x 250 units

2) Storage as Liquid

Liquid helium Dewar ~ 50,000 L (Diameter 2.5 m x Length 10 m)

~ 50,000 L/unit x 13 units

Vaporization loss:

- 50,000 L x 0.5 %/day = 250 L/day ~10 L/hr
 - (Small refrigerator can be used as "Baby-Sitter")

Hosoyama, International Workshop on Linear Colliders 2010

LINEAR COLLIDER COLLABORATION

Helium Refrigeration System Components

Helium Refrigeration System in Tunnel

20140408/CFS-ADI Joint Meeting/Cryogenic Cavern/NAKAI H.

12

Typical Access Hall (Cryogenic Cavern)

13

Cited from ILC-TDR

- Cryogenic caverns will be constructed at the end of the access tunnels at every 5 km intervals of the main tunnel.
- The 4K and 2K cold boxes and distribution box will be installed in cryogenic caverns.
- The compressors will be installed in the far end of cryogenic cavern.
- Large amount of helium inventory will be stored as liquid helium for long shutdown of the cryogenic system.
- The cooling water used at the cryogenic plant will be supplied by cooling towers constructed at entrance of access tunnel. (---> on surface?)
- We need detailed engineering design study of cryogenic system collaboration with industry.
- Extraction of heat from the deep tunnel economically is key issue.
- We need more study including new idea.

Hosoyama, International Workshop on Linear Colliders 2010

Extra Slides

LINEAR COLLIDER COLLABORATION

Designing the world's next great particle accelerato

LINEAR COLLIDER COLLABORATION

Basic Cryogenic Segmentation in Main Linacs

Schematic Layout of Main Linacs

Electron Linac

			PM-12				PM-10				PM-8		
<			CC		• ←				→ ←				
RTML		1282.5m		2446.2m	2	446.2m		2446.2m		2446.2m	coll. sect	e+ source	
	tot.												
Long strings	0	0		0		0		0		0			
Short strings	95	11		21		21		21		21			
Cold boxes	90	10		20		20		20		20			
ML units	285	33		63		63		63		63			
Cryomodules	855	99		189		189		189		189			
RF stations	190	22		42		42		42		42			
Beam Energy	15		42.9		96.3		149.7		203.0		256.4 GeV		
		≺ 1286.4m -	~	49	07.8m-		~		4907.8r	n ———	>< 86.2m÷		
	ļ	<				1	1188.1n	n ———				•	

Positron Linac

			M+12		РМ+10 С С		PM+8	
RTML		1282.5m	2446.2m	n 2446.	.2m 2446.:	2m 2329.9m	coll. sect	BDS
	tot.							
Long strings	0	0	0	0	0	0		
Short strings	94	11	21	21	. 21	20		
Cold boxes	89	10	20	20	20	19		
ML units	282	33	63	63	63	60		
Cryomodules	846	99	189	189	9 189	180		
RF stations	188	22	42	42	42	40		
Beam Energy	15		42.9	96.3	149.7	203.0	253.8 GeV	
		← 1286.4m —	→<	4907.8m		— 4791.4m ———	→ 86.2m →	
	ļ	<			— 11071.8m ——		>	

Cited from ILC-TDR

- 2K cold boxes and distribution boxes will be installed in the cavern in the main tunnel
- 4 K cold boxes & compressor units will be installed at the end of access tunnel

3) Compressor unit will be installed far away from main tunnel in the cavern near by access tunnel.

4) Helium will be recovered as liquid in the Dewar installed near by the 4 K refrigerator cold box.

Hosoyama, International Workshop on Linear Colliders 2010

Access Tunnel

- 2K cold boxes and distribution boxes will be installed in the cavern in the main tunnel
- 4 K cold boxes & compressor units will be installed at the end of access tunnel

4) Helium will be recovered as liquid in the Dewar installed near by the 4 K refrigerator cold box.

Hosoyama, International Workshop on Linear Colliders 2010

Area	# of Plants	Installed Plant Size (each) (MW)	Total Installed Power (MW)	Operating Power (each) (MW)	Total Operating Power (MW)
Main Linac + RTML flat/mntn	12 / 10	3.37 / 4.16	40.44 / 41.60	2.63 / 3.24	31.56 / 32.40
Positron Source	1	0.65	0.65	0.35	0.35
Electron Source	1	0.70	0.70	0.48	0.48
Damping Rings	1	1.45	1.45	1.13	1.13
BDS	1	0.41	0.41	0.33	0.33
Experiments	1	1.00	1.00	0.70	0.70
Total	17 / 15		44.65 / 45.81		34.55 / 35.39

Cited from ILC-TDR

System	Flat Topography AC power (MW)	Mountain Topography AC power (MW)
Modulators	58.1	52.1
Other RF system and controls	5.8	5.5
Conventional facilities	13.3	16.4
Cryogenics	32.0	32.0
Total	109.2	106.1

Cited from ILC-TDR

Extraction of Heat from Tunnel (2)

Top view

Hosoyama, International Workshop on Linear Colliders 2010

Heat Transfer Capacity of Refrigerants

		AID	N	-13	R4:	10A	R32		
	WATER	AIK	Liquid	Gas	Liquid	Gas	Liquid	Gas	
Те	37	37	35	35	35	35	35	35	
°C									
Ре			135	0.8	213	89.9			
kPaA			100						
Тс	32	32	32	32	32	32	32	32	
°C					-				
Ре			123	1720 7		75.6			
kPaA			1230.2		157	5.0			
Density	1	0 0012	0 587	0 0105	1 008	0 0883	0 912	0 0652	
t/m3	-	0.0012	0.507	0.0105	1.000	0.0005	0.512	0.0052	
Specific Heat	1	0.24							
Mcal/t•°C	-								
∆т	5	5							
°C	j	5							
Latent Heat			200		Л		50.0		
Mcal/t			20	00	+(0.62		
Velocity	1	5	1	5	1	5	1	5	
m/s	1	5	Ŧ	5	-	5	1	5	
Cooling Power	5	0.0072	157.3	14.1	40.8	17.9	E2 9	10.2	
Mcal/m2•h		0.0072	137.3	14.1	40.0		55.0	13.2	

Hosoyama, International Workshop on Linear Colliders 2010

Motor Power for Circulation of Refrigerants

30 MW Heat Load Case

		AID	N	H3	R4:	10A	R32		
	WATER	AIR	Liquid	Gas	Liquid	Gas	Liquid	Gas	
Mass Flow Rate t/h	5160	21500	96	5.3	637.0		437.3		
Velocity m/s	1.0	5.0	1.0	5.0	1.0	5.0	1.0	5.0	Ideal case: larger pipe size
Pipe Size m	1.35	35.60	0.24	0.81	0.47	0.71	0.41	0.69	} for water
⊿ P(@100m) k Pa	- 5		1.3	1.3	0.2	0.2			
Pipe Size m	1.00	35.60	0.24	0.81	0.47	0.71	0.41	0.69	
Velocity m/s	1.82	5.00	1.00	5.00	1.00	5.00	1.00	5.00	Water pipe size: 1m in dia.
<mark>⊿P(@100m)</mark> k Pa	16.7		1.3	1.3	0.2	0.2			
Pipe Length m	4000	2000	100	100	100	100	500	500	
⊿ <mark>P</mark> k Pa	666.1	0	1.3	1.3	0.2	0.2	0	0	
⊿H m	0 *	0	100	100	100	100	100	100	Note:
Water Head k Pa	0 *	0	587	10.5	1008	88.3	912	65.2	In the case of water ; head of flow and return cancelled
⊿ <mark>P at H.X.</mark> k Pa	100	0		50		50			
Total ⊿P k Pa	766	0	588.3	61.8	1008.2	138.5	912	65.2	
Pe-Pc k Pa			11	2.6	16	4.3			
Pump Efficency %	60%								
Motor Power k w	1318		No Need	No Need	No Need	No Need			
Moter Power / Cooling Power	4.4%		0.0	0%	P-1	ଫsoyan	ia, In	ternatio	nal Workshop on Linear Colliders 2010

- Cooling tower at the entrance of access tunnel can support cooling of underground 2 cryogenic plants.
- Cooling tower cluster can support cooling of ~ 8km long distributed heat load. The cooling water circulate in 900 mm in diameter pipe.
- By installation of the cooling tower in the tunnel, we can eliminate heat exchanger which need to cut the head pressure. But we need large bore shaft.
- By using the "thermo-siphon" of refrigerant we can reduce the pipe size.

Hosoyama, International Workshop on Linear Colliders 2010

Cross Section of Main Linac Tunnel "Kamaboko"

3

Pressure Drop and Power Loss in Helium Pipes

Pressure Drop and Power Loss in Water Pipes

