Update on $\nu \bar{\nu} H, H \rightarrow \mu \mu$

C. Calancha calancha@post.kek.jp

March 14, 2014

Momentum Resolution Event-by-Event Basis

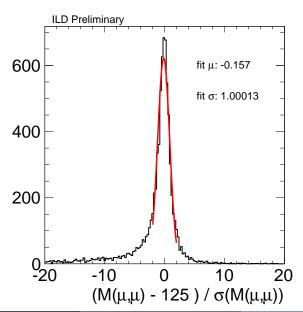
- Working on my code during last week.
- More efficient code
- Remove unnecessary intermediate steps.
- Improve readability of the code.
- I am using it for muons comming from H $\to \mu\mu$ but can be used with whatever charged particle.

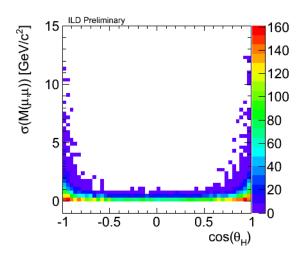
Code

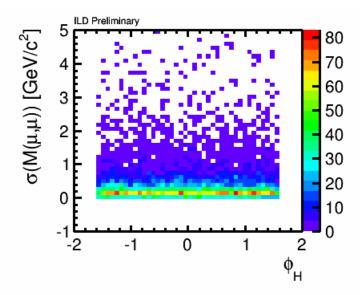
The code is available here: http://www-jlc.kek.jp/jlc/en/node/202

- Current version of the code uses momenta from PandoraPFO collection.
- If you perform some kind of FSAR recovery, those particle momenta will change.
 - You should use the corrected momenta in the dimuon mass error calculation (current code does not).
 - I would expect this error would decrease (if you are really doing a correction).
 - Could be useful to test our FSAR correction algorithms.

Gaussian Fit [-2,2]







Status / Plan

Summary

- Developed piece of code to get covariance matrix of charged particle in momenta space.
- Used it to calculate dimuon mass error event-by-event.
 - Dimuon mass error variable looks sensible.

Plan

• Proceed with H $\rightarrow \mu\mu$ updated analysis.

Back Up

Back Up

$H \to \mu\mu$

Update on ${ m H} ightarrow \mu \mu$ with improved analysis methods

• Started to work on $H \rightarrow \mu\mu$ update.

Plan

- Final selection with TMVA.
- ② Weigth on $\sigma(M(\mu^+, \mu^-))$ event by event (Mikael suggestion).

Weight on $\sigma(M(\mu^+, \mu^-))$

Mikael Suggestion

- Dimuon mass given by muon momentum measurement.
 - Variance on $M(\mu^+,\mu^-)$ error propagation from momentum uncertainty.
- Well measured signal events have small $M(\mu^+, \mu^-)$ errors.
- Badly measured background events lying around signal window would have larger $M(\mu^+,\mu^-)$ errors.
- \longrightarrow Variable $1/\sigma(M(\mu^+,\mu^-))$ could improve S/B.

 $(M(\mu^+,\mu^-)$ depends simetrically on both muons)

$$\sigma^{2}(M(\mu^{+}, \mu^{-})) = \frac{1}{M(\mu^{+}, \mu^{-})^{2}} [P_{1}^{T} \Sigma_{2} P_{1} + P_{2}^{T} \Sigma_{1} P_{2}]$$

(*) P_i column vector $x^i = (E, px, py, pz), P_i^T$, row vector $x_i = g_{ij}x^j = (E, -px, -py, -pz)$

 $(g_{ij}$ metric in the Minkowski space: [+1 -1 -1 -1]), Σ_i covariance matrix of muon i.

Weight on $\sigma(M(\mu^+, \mu^-))$

$$\sigma^{2}(M(\mu^{+}, \mu^{-})) = \frac{1}{M(\mu^{+}, \mu^{-})^{2}} [P_{1}^{T} \Sigma_{2} P_{1} + P_{2}^{T} \Sigma_{1} P_{2}]$$

- $\binom{\star}{g_{ij}}$ P_i column vector $x^i = (E, px, py, pz), P_j^T$, row vector $x_i = g_{ij}x^j = (E, -px, -py, -pz)$ $(g_{ij}$ metric in the Minkowski space: [+1 -1 -1 -1]), Σ_j covariance matrix of muon i.
 - I assumed $Var(m_i) = 0$ (m_i , muon mass).
 - Even without mass constraint, at 1 TeV, i would expect $\lim \frac{Var(m)}{Var(p)} \approx 0$

ReconstructedParticle.getCovMatrix() returns null

- This covariance matrix is not filled (why not?).
 - → Need to perform additional algebra.
 - Covariance matrix from associated track is available.
 - In helix parameterization basis: $d_0, z_0, \Omega, \phi, tan\lambda$
 - If \mathfrak{J} is the Jacobian matrix from helix parameters to (px,py,pz,E)
 - $\longrightarrow \Sigma_i' = \mathfrak{J} \Sigma_i \mathfrak{J}^T$, covariance matrix in momenta space.

Jacobian helix parameters to momenta space

After some derivative exercises ...

 $\longrightarrow \Sigma_i' = \mathfrak{J} \Sigma_i \mathfrak{J}^T$, covariance matrix in momenta space.

- Could be useful storing this covariance matrix for charged particles.
- so that, we could retrieve it by calling ReconstructedParticle.getCovMatrix(). (Currently returning null matrix)