Momentum Resolution Event-by-Event Basis

C. Calancha calancha@post.kek.jp

2014, April 4

Momentum Resolution Event-by-Event Basis

Developped code for covariance matrix P momenta

- Last meetings i reported i was developping this code.
- See my previous talks for more details.
- I have written marlin processor adding new LCCollection of pfos with the cov. matrix filled.
- I have repeated my calculations.
- During that calculations some questions arise to my mind.
- I found answer to such questions.
- Today i talk about and share what i have learned about it (*).
(*) If you are not interested in linear algebra please jump to summary.

Understanding the new variable

Change of Basis

- We are actually doing a change of basis:
- Original base: $\mathfrak{A}=\left\{\tan \lambda, \Omega, \phi, \mathrm{d}_{0}, \mathrm{z}_{0}\right\}$
- New base: $\mathfrak{B}=\left\{p_{x}, p_{y}, p_{z}, E\right\}$
- Original basis has higher rank: full description of the phenomena.
- \mathfrak{B} is actually expanding just one subspace of the total space \mathfrak{H} expanded by \mathfrak{A}.
- That looks logical: with \mathfrak{A} provides position and momenta of the track. \mathfrak{B} just provide momenta/energy.
- Could correlations of basis vectors $\{\tan \lambda, \Omega, \phi\}$ with $\left\{\mathrm{d}_{0}, \mathrm{z}_{0}\right\}$ have impact on correlations of \mathfrak{B} basis vectors.
- Say in other words: Is it the subspace expanded by $\left\{\mathrm{d}_{0}, \mathrm{z}_{0}\right\}$ orthogonal to the subspace generated by $\left\{p_{x}, p_{y}, p_{z}, E\right\}$?
- Or alternatively: Should i use the full covariance matrix in helicity parameters space (\mathfrak{A}) when traslating it to the new basis (\mathfrak{B})?
- My first thought was saying: no, i dont need it.
- Then i saw other experiments use my same expressions (CDF, LHCb).
- But, is it just a valid aproximation? Is it exact? I want to know it.
- Good opportunity to learn something new.

Jacobian helix parameters to momenta space

- After some derivative exercises ...
$\mathfrak{J}=\left[\begin{array}{cccc}\frac{\partial P_{x}}{\partial \tan \lambda} & \frac{\partial P_{y}}{\partial \tan \lambda} & \frac{\partial P_{z}}{\partial \tan \lambda} & \frac{\partial E}{\partial \tan \lambda} \\ \frac{\partial P_{x}}{\partial \Omega} & \frac{\partial P_{y}}{\partial \Omega} & \frac{\partial P_{z}}{\partial \Omega} & \frac{\partial E}{\partial \Omega} \\ \frac{\partial P_{x}}{\partial d_{0}} & \frac{\partial P_{y}}{\partial d_{0}} & \frac{\partial P_{z}}{\partial d_{0}} & \frac{\partial E}{\partial d_{0}} \\ \frac{\partial P_{x}}{\partial z_{0}} & \frac{\partial P_{y}}{\partial z_{0}} & \frac{\partial P_{z}}{\partial z_{0}} & \frac{\partial E}{\partial z_{0}} \\ \frac{\partial P_{x}}{\partial \phi} & \frac{\partial P_{y}}{\partial \phi} & \frac{\partial P_{z}}{\partial \phi} & \frac{\partial E}{\partial \phi}\end{array}\right]=\frac{-1}{\Omega}\left[\begin{array}{cccc}0 & 0 & -\Omega P_{T} & -\frac{P_{z}^{2} \Omega}{E \tan \lambda} \\ P_{x} & P_{y} & P_{z} & \frac{P^{2}}{E} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ P_{y} \Omega & -P_{x} \Omega & 0 & 0\end{array}\right]$
$\longrightarrow \Sigma_{i}^{\prime}=\mathfrak{J}^{\top} \Sigma_{i} \mathfrak{J}$, covariance matrix in momenta space.
($\Sigma_{i}^{\prime}=\mathfrak{J} \Sigma_{i} \mathfrak{J}^{\top}$ if you define jacobian as the transposed of quoted above)

Is there effect on d 0 zO on the Covariance matrix?

- Original base: $\mathfrak{A}=\left\{\tan \lambda, \Omega, \phi, \mathrm{d}_{0}, \mathrm{z}_{0}\right\}$
- New base: $\mathfrak{B}=\left\{p_{x}, p_{y}, p_{z}, E\right\}$

$$
\begin{array}{r}
\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{T}} \cos \phi \\
\mathrm{p}_{\mathrm{y}}=\mathrm{p}_{\mathrm{T}} \sin \phi \\
\mathrm{p}_{\mathrm{z}}=\mathrm{p}_{\mathrm{T}} \tan \lambda \\
E^{2}=\left(a \frac{B_{z}}{\Omega \cos \lambda}\right)^{2}+m^{2} \\
=\left(\frac{\mathrm{p}_{\mathrm{T}}}{\cos \lambda}\right)^{2}+m^{2}
\end{array}
$$

Momenta does not depend on $\mathrm{d}_{0}, \mathrm{z}_{0}$

- $\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{x}}(\tan \lambda, \Omega, \phi)$
- $\mathrm{p}_{\mathrm{y}}=\mathrm{p}_{\mathrm{y}}(\tan \lambda, \Omega, \phi)$
- $\mathrm{p}_{\mathrm{z}}=\mathrm{p}_{\mathrm{z}}(\tan \lambda, \Omega)$

Change of cov. matrix

(1) $\Sigma_{i}^{\prime}=\mathfrak{J}^{T} \Sigma_{i} \mathfrak{J}$
(2) $\Sigma_{i} \operatorname{cov}$. matrix in \mathfrak{A}.
(3) $\Sigma_{i}^{\prime} \operatorname{cov}$. matrix in \mathfrak{B}.

- Should i include full matrix (rank 5) in the item 1)?
- The goal of this report is to answer this question.

Is there effect on d 0 zO on the Covariance matrix?

Momenta does not depend on $\mathrm{d}_{0}, \mathrm{z}_{0}$

- $\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{x}}(\tan \lambda, \Omega, \phi)$
- $\mathrm{py}_{\mathrm{y}}=\mathrm{p}_{\mathrm{y}}(\tan \lambda, \Omega, \phi)$
- $\mathrm{p}_{\mathrm{z}}=\mathrm{p}_{\mathrm{z}}(\tan \lambda, \Omega)$

Intuitively space/momentum are independent measurements, but... are they?

- Position and momenta info. comming as a result of track fitting. So, eventually they are not independent measurements: the info comes from same fits.
- The covariance in helix parameters comes from track fitting.
- The covariance in \mathfrak{A} space is a symmetric 5×5 matrix with (generally) non null elements.
- That means, every variable has some correlation with others: $\operatorname{Cov}(i, i) \neq 0, \forall i, j$
- In particular, d_{0} or z_{0} correlation on $\tan \lambda$.
- So, as p_{x} depend on $\tan \lambda$, why not $\mathrm{d}_{0}, \mathrm{z}_{0}$ effect on, for instance $\tan \lambda$, be translated to p_{x} when we go from \mathfrak{A} to \mathfrak{B} ?
- For me it is not obvious why those correlations should canceled.

Same Result using full matrix or not

Comparison cov. matrix using 3×3 and 5×5 helix matrix

	cov $x x$	cov yx	cov yy	cov zx	cov zy	cov zz	\ldots
$\operatorname{cov} 3 x 3$	$1.57576 \mathrm{e}-05$	$-3.9027 \mathrm{e}-06$	$2.10397 \mathrm{e}-06$	$2.88209 \mathrm{e}-05$	$-7.63759 \mathrm{e}-06$	$5.71544 \mathrm{e}-05$	\ldots
$\operatorname{cov} 5 x 5$	$1.57576 \mathrm{e}-05$	$-3.9027 \mathrm{e}-06$	$2.10397 \mathrm{e}-06$	$2.88209 \mathrm{e}-05$	$-7.63759 \mathrm{e}-06$	$5.71544 \mathrm{e}-05$	\ldots

- The covariance matrix is exactly the same.
- That means $\mathrm{d}_{0}, \mathrm{z}_{0}$ correlations canceled identically.

Cancelation Proof I

- To show this cancelation is useful to order the base vectors in the following way:
- $\mathfrak{A}=\left\{\mathrm{d}_{0}, \mathrm{z}_{0}, \tan \lambda, \Omega, \phi\right\}$
- $\mathfrak{B}=\left\{p_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}, E\right\}$
- Now, the jacobian looks like (first two rows are null):

$$
\mathfrak{J}=\left[\begin{array}{cccc}
\frac{\partial P_{x}}{\partial d_{0}} & \frac{\partial P_{y}}{\partial d_{0}} & \frac{\partial P_{z}}{\partial d_{0}} & \frac{\partial E}{\partial d_{0}} \\
\frac{\partial P_{x}}{\partial z_{0}} & \frac{\partial P_{y}}{\partial z_{0}} & \frac{\partial P_{z}}{\partial z_{0}} & \frac{\partial E}{\partial z_{0}} \\
\frac{\partial P_{x}}{\partial \operatorname{tan\lambda }} & \frac{\partial P_{y}}{\partial \tan \lambda} & \frac{\partial P_{z}}{\partial \tan \lambda} & \frac{\partial E}{\partial \tan \lambda} \\
\frac{\partial P_{x}}{\partial \Omega} & \frac{\partial P_{y}}{\partial \Omega} & \frac{\partial P_{z}}{\partial \Omega} & \frac{\partial E}{\partial \Omega} \\
\frac{\partial P_{x}}{\partial \phi} & \frac{\partial P_{y}}{\partial \phi} & \frac{\partial P_{z}}{\partial \phi} & \frac{\partial E}{\partial \phi}
\end{array}\right]=\frac{-1}{\Omega}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\Omega P_{T} & -\frac{P_{z}^{2} \Omega}{E \tan \lambda} \\
P_{x} & P_{y} & P_{z} & \frac{P^{2}}{E} \\
P_{y} \Omega & -P_{x} \Omega & 0 & 0
\end{array}\right]
$$

- The cov. matrix in the original basis looks like:
$\mathfrak{A}=\left[\begin{array}{ccccc}\operatorname{Cov}\left[d_{0}, d_{0}\right] & \operatorname{Cov}\left[d_{0}, z_{0}\right] & \operatorname{Cov}\left[d_{0}, \tan \lambda\right] & \operatorname{Cov}\left[d_{0}, \Omega\right] & \operatorname{Cov}\left[d_{0}, \phi\right] \\ \operatorname{Cov}\left[z_{0}, d_{0}\right] & \operatorname{Cov}\left[z_{0}, z_{0}\right] & \operatorname{Cov}\left[z_{0}, \tan \lambda\right] & \operatorname{Cov}\left[z_{0}, \Omega\right] & \operatorname{Cov}\left[z_{0}, \phi\right] \\ \operatorname{Cov}\left[\tan \lambda, d_{0}\right] & \operatorname{Cov}\left[\tan \lambda, z_{0}\right] & \operatorname{Cov}[\tan \lambda, \tan \lambda] & \operatorname{Cov}[\tan \lambda, \Omega] & \operatorname{Cov}[\tan \lambda, \phi] \\ \operatorname{Cov}\left[\Omega, d_{0}\right] & \operatorname{Cov}\left[\Omega, z_{0}\right] & \operatorname{Cov}[\Omega, \tan \lambda] & \operatorname{Cov}[\Omega, \Omega] & \operatorname{Cov}[\Omega, \phi] \\ \operatorname{Cov}\left[\phi, d_{0}\right] & \operatorname{Cov}\left[\phi, z_{0}\right] & \operatorname{Cov}[\phi, \tan \lambda] & \operatorname{Cov}[\phi, \Omega] & \operatorname{Cov}[\phi, \phi]\end{array}\right]$

Cancelation Proof II

- $\mathfrak{A}=\left\{\mathrm{d}_{0}, \mathrm{z}_{0}, \tan \lambda, \Omega, \phi\right\}$
- $\mathfrak{B}=\left\{p_{x}, p_{y}, p_{z}, E\right\}$

$$
\begin{aligned}
& \Sigma_{i}^{\prime}=\mathfrak{J}^{\top} \Sigma_{i} \mathfrak{J} \\
& \Sigma_{i}^{\prime}=\left(b_{i j}\right) \\
& \Sigma_{i}=\left(a_{i j}\right) \\
& \mathfrak{J}=\left(h_{i j}\right)
\end{aligned}
$$

$b_{i j}=\sum_{r=1}^{5} \sum_{m=1}^{5} h_{r i} a_{r m} \cdot h_{m j}$
$=\sum_{m=1}^{5}\left(\sum_{r=1}^{5} h_{r i} a_{r m}\right) \cdot h_{m j}$
$=\sum_{m=1}^{5}\left(0 \cdot a_{1 m}+0 \cdot a_{2 m}+\sum_{r=3}^{5} h_{r i} a_{r m}\right) \cdot h_{m j}$
$=() \cdot h_{1 j}+() \cdot h_{2 j}+\sum_{m=3}^{5}\left(0 \cdot a_{1 m}+0 \cdot a_{2 m}+\sum_{r=3}^{5} h_{r i} a_{r m}\right) \cdot h_{m j}$
$=\sum_{m=3}^{5}\left(\sum_{r=3}^{5} h_{r i} a_{r m}\right) \cdot h_{m j}$

O ($a_{i j}$) elements related with $\mathrm{d}_{0}, \mathrm{z}_{0}$ does not contribute to $\left(b_{i j}\right)$ (see previous slide).

- Geometrically that means: subspaces generated by $\left\{\mathrm{d}_{0}, \mathrm{z}_{0}\right\}$ and \mathfrak{B} are orthogonal.
- From an experimental point of view: i dont need to use the full (5×5) covariance matrix in helicity parameters (just the 3×3).

Marlin Processor

- I have written a new Marlin Processor filling the covariance matrix in P.
- Output is a new LCCollection copy of PandoraPFOs but with non null cov. matrix.
- This code should be included in new releases of ILCSOFT.
- Code will be available very soon (hopefully this evening) at kekcc here:
- /hsm/ilc/grid/JB/users/calancha/code/marlin/momentumCov
- Example and xmlfile will be provided in same directory as well.

Summary

- Developed piece of code to get covariance matrix of charged particles in momenta space.
- Understood why i just need $\{\tan \lambda, \Omega, \phi\}$ variables in the calculation.
- A new LCCollection is added to the event (copy of PandoraPFOs) with filled cov. matrix.
- Used it to calculate dimuon mass error event-by-event,
- but it is useful on its own (directly related with ILD tracking).

BACKUP

BACK UP

- Last meeting a show some scatter plots with the new variable.
- Plots were not clear due to not right choice of the axis.
- Its more clear to plot profile plots to see the dependence of the two variables.

- Better precision at central region (tracks have more hits).

- No dependence on azimutal angle.

Gaussian Fit [-2,2]

