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!
• ILC physics with jets 
!

• Particle flow calorimetry 
!

• Test beam validation 
!

• ECAL and HCAL developments

Outline



MC

Calorimetry for the ILC Felix Sefkow     DESY, May 9, 2014 

Physics Performance
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FIGURE 3.3-12. a) Di-jet mass from the 5C kinematic fit after all selection cuts. b) Fit of the background
and Chargino and Neutralino contributions. The fit parameters are the normalisations of the W and
Z peaks. c) Energy spectra of W and Z boson candidates after the Chargino and d) Neutralino event
selections, shown including fits to signal and background contributions.

the W and Z candidates from the kinematic fit are shown in Figure 3.3-12c/d. The masses
of the gauginos are determined from the kinematic edges of the distributions located using
an empirically determined fitting function for the signal and a parameterisation of the SM
background. From the fit results the upper and lower kinematic edges of the �̃±1 sample
are determined to ±0.2 GeV and ±0.7 GeV respectively. The corresponding numbers for the
�̃0

2 sample are: ±0.4 GeV and ±0.8 GeV. For the SUSY point 5 parameters, the �̃±1 lower
edge is close to mW and, thus, does not significantly constrain the gaugino masses. The
other three kinematic edges can be used to determine the gaugino masses with a statistical
precision of 2.9 GeV, 1.7 GeV and 1.0 GeV for the �̃±1 , �̃0

2, and �̃0
1 respectively. The errors on

the masses are larger than the errors on the positions of the edges themselves. This reflects
the large correlations between the extracted gaugino masses; the di↵erences in masses are
better determined than the sum. If the LSP mass were known from other measurements, e.g.
from the slepton sector, the errors on the �̃±1 and �̃0

2 masses would be significantly reduced.
Furthermore, the resolutions can be improved by about a factor of two using a kinematic
fit which constrains the boson masses for chargino (neutralino) candidates not only to be
equal to each other, but also to be equal to the nominal W (Z) mass. In this case, statistical
precisions of 2.4GeV, 0.9GeV, and 0.8GeV are obtained for the �̃±1 , �̃0

2, and �̃0
1 respectively.
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FIGURE 3.3-17. a) The c-tag of the two jets in candidate ZH ! qqcc events after all other cuts apart
from the c-tag and c-likeness cut. b) Distribution of the reconstructed di-jet mass for the ZH ! ⌫⌫̄cc̄
sample prepared by bc-tagging.

centre-of-mass energy, the combined results shown in Table 3.3-5 are broadly in agreement
with those obtained with a fast simulation analysis performed in the context of the TESLA
TDR [34].

Channel Br(H ! bb) Br(H ! cc) Br(H ! gg)

ZH ! `+`�qq (2.7� 2.5)% (28� 2.5)% (29� 2.5)%

ZH ! ⌫⌫̄H (1.1� 2.5)% (13.8� 2.5)% �
ZH ! qqcc � (30� 2.5)% �
Combined 2.7% 12% 29%

TABLE 3.3-5
Expected precision for the Higgs boson branching fraction measurements (

p
s = 250GeV) for the individual

Z decay channels and for the combined result. The expected 2.5% uncertainty on the total Higgs production
cross section is added in quadrature. The results are based on full simulation/reconstruction and assume
an integrated luminosity of 250 fb�1. Entries marked � indicate that results are not yet available.

3.3.3 Tau-pairs

The reconstruction of ⌧+⌧� events at
p
s = 500 GeV provides a challenging test of the detec-

tor performance in terms of separating nearby tracks and photons. The expected statistical
sensitivities for the ⌧+⌧� cross section, the ⌧+⌧� forward-backward asymmetry, A

FB

, and
the mean tau polarisation, P

⌧

, are determined for and integrated luminosity of 500 fb�1 with
beam polarisation, P (e+, e�) = (+30%,�80%).

Simulated events with less than seven tracks are clustered into candidate tau jets each
of which contains at least one charged particle. Tau-pair events are selected by requiring
exactly two candidate tau jets with opposite charge. The opening angle between the two tau
candidates is required to be > 178� to reject events with significant ISR (including radiative
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ILC physics with jets: Minv

• W - Z separation 
– study strong e.w. symmetry breaking at 1 TeV 

• Other di-jet mass examples 
– H → cc, Z → νν 
– Higgs recoil with Z → qq 
– invisible Higgs  
– WW fusion → H → WW  

• total width and gHww 

• SUSY example: 
– Chargino neutralino separation

3

6.3. ILD benchmarking

obtained, demonstrating that the ILD jet energy resolution is su�cient to separate the hadronic
decays of gauge bosons.

Figure III-6.8
a) The reconstructed
di-jet mass distribu-
tions for the best jet-
pairing in selected
‹e‹̄eWW (blue) and
‹e‹̄eZZ (red) events atÔ

s = 1 T eV . b) Distri-
butions of the average
reconstructed di-jet
mass, (mij + mB

kl)/2.0,
for the best jet-pairing
for ‹e‹̄eWW (blue)
and ‹e‹̄eZZ (red)
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6.3 ILD benchmarking

In chapter 1.4, the list of benchmark reactions is described which have been studied by the detector
groups (for more detail see [386]). The result of the analyses of these benchmarks are briefly presented
in this section. The generation of both signal, physics background, and machine background was
done as a common e�ort between ILD and SiD and is described in detail in chapter 2.2. The detector
simulation software and detector model used are described in chapter 5.4. Events for the analyses were
generated and simulated with the detailed GEANT4 based ILD model, and centrally reconstructed.
The PandoraPFA and LCFIPlus algorithms (described in chapter 2.2) were used.

The first three benchmark processes presented are at
Ô

s=1 TeV. They were chosen partly to
demonstrate the capability of the detectors under the conditions of the ILC operating at 1 TeV, partly
to exploit the opportunities that this higher energy would bring. More specifically:
e+e≠ æ ‹‹̄h is intended to test the detector capabilities in simple topologies.

e+e≠ æ W +W ≠ is complementing the first benchmark by topologies with jets at higher energies
and at lower angles.

e+e≠ æ tt̄h is intended to demonstrate the capability of the detector to disentangle very complicated
final states.

These processes were studied assuming an integrated luminosity (L) of 1 ab≠1, and with polarised
beams. Using the convention that Pp≠,p+ denotes a configuration of p ≠ % degree of polarisation
for the electrons, p + % for the positrons, the full sample was evenly divided in two samples with
P≠80,+20

and P
+80,≠20

. The full sample is referred to as the full DBD sample in the following, while
the two sub-samples are called the DBD P≠80,+20

and P
+80,≠20

samples.
The last of the benchmark processes was the analysis of e+e≠ æ tt at

Ô
s = 500 GeV. The

integrated luminosity was assumed to be 500 fb≠1, evenly divided in a P≠80,+30

sample and a
P

+80,≠30

one. This particular reaction was chosen to compare the current more detailed ILD model
to the one used in earlier studies to understand the impact the improved simulation model has on the
physics reach.
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WWνν, ZZνν prod.

Chapter 6. ILD Performance
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Figure III-6.11. Left:Reconstructed h æ bb di-jet mass distribution after the b-tagging selection. Right: Recon-
structed Higgs mass distribution in h æ WW

ú fully hadronic decay channel. Both figures correspond to the DBD
P≠80,+20

sample.

mode, h æ WWú æ qqqq, was considered. At
Ô

s = 1 TeV, higher instantaneous luminosity is
expected than at 250 or 500 GeV. This, together with the rising Higgs production cross section,
implies that one can accumulate observable amounts of h æ µ+µ≠ events (‡·BR= 0.089 fb for
P≠80,+20

).
In the h æ bb, cc, and gg channels, the events have in common that they contain two jets

with a di-jet mass consistent with the Higgs mass and that they have large missing energy due to the
neutrinos. Flavour tagging is crucial to distinguish the decay channels.

Jets were reconstructed by first employing the kt jet clustering algorithm with R = 1.1 and
Njet = 2 to remove particles from pile-up events, and then the Durham algorithm on the remaining
particles. In order to reduce the background, it was required that the visible energy and longitudinal
momentum should be small, while the transverse momentum should be high. Cuts based on the total
particle-multiplicity and the polar angle of the jets were applied to reduce the 2-fermion background.
Finally, the Higgs candidate events for flavour tagging were selected by requiring the mass of the
di-jet to be in [110, 150] GeV. The e�ciency to select h æ bb, cc and gg at this stage were 35.0%,
37.3% and 35.9%, respectively, while the major background was the ‹‹̄qq̄ (non-Higgs) final state.

A flavour tagging template fitting was performed to extract ‡·BR for the di�erent channels.
The flavour templates of h æ bb, cc, gg, and backgrounds were obtained from the flavour tagging
boosted-decision tree output of LCFIPlus. Figure III-6.11 (left) shows the reconstructed h æ bb di-jet
mass distribution after applying a b-tagging cut for the DBD P≠80,+20

sample. By repeating the
template fit 5000 times on distributions generated by a toy Monte Carlo, the measurement expected
accuracies on ‡·BR could be evaluated.

In the fully hadronic h æ WWú channel, the expected final state is four jets consistent with
WWú, with total mass consistent with the Higgs mass, while having large missing energy and
missing transverse momentum. Background from pile-up events was removed by employing the kt

jet clustering algorithm with R = 0.9 and Njet = 4. The remaining particles were forced to into a
four-jet configuration using the Durham algorithm. From the reconstructed four jets, the jet pairing
yielding the di-jet mass closest to m

W

was assumed to be the W. The other di-jet should have a
mass between 15 and 60 GeV. In the jet clustering, it was demanded that the Durham algorithm
should show a preference for the four-jet configuration. Subsequently, pre-selections similar to those
of the two-jet channel were applied. In this channel, h æ bb could be a major background, therefore
the b-likeness from LCFIPlus was required to be low.

The distribution of the reconstructed Higgs mass in the h æ WWú hadronic decay channel
is shown in Figure III-6.11 (right) for the DBD P≠80,+20

sample. Signal selection e�ciency of
h æ WWú was 12.4% and remaining major backgrounds are 4-fermions (e+e≠ æ ‹‹̄qq̄), 3-fermions

294 ILC Technical Design Report: Volume 4, Part III
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Jet energies

• σm/m = 1/2 √(σE1/E1)2+(σE2/E2)2 
– low energy jets important  
– high energy, too 

!
• At √s = 500 GeV 
• example chargino, neutralino → qq + invis. 
• At √s = 1 TeV 
• example WW→H → WW → lνqq

4
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MC

Scintillator HCAL Felix Sefkow  2013 

W Z separation vs W in multi-jets 

5

14

At this stage, it seems that all of these technological options
can meet the performance requirements

Differences in performance are not large
no show-stoppers found
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MC

Scintillator HCAL Felix Sefkow   2013 

W Z separation vs W in multi-jets 

• important physics 
• but useless for detector optimisation

6

14

At this stage, it seems that all of these technological options
can meet the performance requirements

Differences in performance are not large
no show-stoppers found
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Particle flow concept  
and detectors

7
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The jet energy challenge

• Jet energy performance of existing detectors is 
not sufficient for W Z separation 

• E.g. CMS: ~ 100%/√E, ATLAS ~ 70%/√E  
• Calorimeter resolution for hadrons is intrinsically 

limited  
• Resolution for jets worse than for single hadrons  
• It is not sufficient to have the world best 

calorimeter 

8

920 ZEUS Collaboration / Physics Letters B 718 (2013) 915–921

Fig. 2. The Mjets distribution of the data (a) after all selection criteria, except for the ηmax cut, (b)–(d) in several ηmax slices.

Fig. 3. The Mjets distribution and the fit result. The data are shown as points, and
the fitting result of signal + background (background component) is shown as solid
(dashed) line. The signal contribution is also indicated by the shaded area and
amounts to a total number of Nobs events. The error bars represent the approximate
Poissonian 68% CL intervals, calculated as ±

√
n + 0.25 + 0.5 for a given entry n.

with

f i =
{

Nref,i − Nobs,i + Nobs,i ln(Nobs,i/Nref,i) (if Nobs,i > 0)
Nref,i (if Nobs,i = 0).

The best combination of (a,b,ϵ) is found by minimising χ̃2. The
value of a after this optimisation gives the ratio between the ob-
served and expected cross section, i.e. σobs = aσSM. The maximum
and minimum values of a in the interval %χ̃2 < 1 define the range
of statistical uncertainty.

7. Systematic uncertainties

Several sources of systematic uncertainties were considered and
their impact on the measurement estimated.

• An uncertainty of 3% was assigned to the energy scale of the
jets and the effect on the acceptance correction was estimated
using the signal MC. The uncertainty on the Z 0 cross-section
measurement was estimated to be +2.1% and −1.7%.

• The uncertainty associated with the elastic and quasi-elastic
selection was considered. In a control sample of diffractive DIS
candidate events, the ηmax distribution of the MC agreed with
the data to within a shift of ηmax of 0.2 units [23]. Thus, the
ηmax threshold was changed in the signal MC by ±0.2, and
variations of the acceptance were calculated accordingly. The
uncertainty on the cross-section measurement was +6.4% and
−5.4%.

• The background shape uncertainty was estimated by using dif-
ferent slices of ηmax in the fit. The background shape was
obtained using only the regions of 4.0 < ηmax < 4.2 or 4.2 <
ηmax. The region of 3.0 < ηmax < 4.0 was not used since

35%√E 
for pions,  

6 GeV for Z

LC goal



« In a typical jet :   
s  60 % of jet energy in charged hadrons 
s  30 % in photons  (mainly from                  )                        
s  10 % in neutral hadrons (mainly      and        )

« Traditional calorimetric approach: 
s  Measure all components of jet energy in ECAL/HCAL ! 
s  ~70 % of energy measured in HCAL:  
s  Intrinsically “poor” HCAL resolution limits jet energy resolution

« Particle Flow Calorimetry paradigm: 
s  charged particles measured in tracker  (essentially perfectly) 
s  Photons in ECAL:                                     
s  Neutral hadrons (ONLY) in HCAL 
s  Only 10 % of jet energy from HCAL 

EJET = EECAL + EHCAL EJET = ETRACK + Eγ + En 

much improved resolution

n
π+

γ

Particle Flow Calorimetry

Mark Thomson



Particle Flow Reconstruction

Mark Thomson

Reconstruction of a Particle Flow Calorimeter: 
« Avoid double counting of energy from same particle 
« Separate energy deposits from different particles

If these hits are clustered together with 
these, lose energy deposit from this neutral 
hadron (now part of track particle) and ruin  
energy measurement for this jet.

Level of mistakes, “confusion”, determines jet energy resolution 
        not the intrinsic calorimetric performance of ECAL/HCAL

e.g.

Three types of confusion: 
i) Photons ii) Neutral Hadrons iii) Fragments

Failure to resolve photon
Failure to resolve  
neutral hadron

Reconstruct fragment as 
separate neutral hadron

10
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Particle flow detectors

• large radius, large field, compact calorimeter, fine 3D granularity 
– Typ. 1X0 long., transv.: ECAL 0.5cm, HCAL 1cm (gas) - 3cm (scint.) 

• optimised in full simulations and particle flow reconstruction 

11
4/23/2012 KILC12 SiD Progress Towards DBD 4 

The Silicon 
Detector 
Concept 

SiD:all-Si tracker, B=5T, PFLOW caloILD: large TPC, B=3.5T, PFLOW calo

CLIC:  
tungsten  

barrel HCAL
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Detectors for the ILC Felix Sefkow     Fukuoka, 6.11.2013 

Granularity optimisation

• Based on Pandora 
PFA 
!

• Extensive studies 
done for the LOI 
!

• Both ECAL and HCAL 
segmentation of the 
order of X0 

!
• Cost optimisation to 

be done

12

ARTICLE IN PRESS

than a very high magnetic field. From the perspective of designing
a real PFlow detector, this scaling law should be taken into account
in a cost-driven optimisation of the detector parameters.

9.5. ECAL and HCAL design

The dependence of PFlow performance on the transverse
segmentation of the ECAL was studied using modified versions of
the LDCPrime model. The jet energy resolution is determined for
different ECAL Silicon pixel sizes; 5! 5 mm2, 10! 10 mm2,
20! 20 mm2, and 30! 30 mm2. The two main clustering para-
meters in the PandoraPFA algorithm were re-optimised for each
ECAL granularity. The PFlow performance results are summarised
in Fig. 13a. For 45 GeV jets, the dependence is relatively weak
since the confusion term is not the dominant contribution to the
resolution. For higher energy jets, a significant degradation in
performance is observed with increasing pixel size. Within the
context of the current reconstruction, the ECAL transverse
segmentations have to be at least as fine as 10! 10 mm2 to
meet the ILC jet energy requirement of sE=Eo3:8% for the jet
energies relevant at

ffiffi
s
p
¼ 1 TeV, with 5! 5 mm2 being preferred.

A similar study was performed for the HCAL. The jet energy
resolution obtained from PandoraPFA was investigated for HCAL
scintillator tile sizes of 1! 1 cm2, 3! 3 cm2, 5! 5 cm2 and
10! 10 cm2. The PFlow performance results are summarised in
Fig. 13b. From this study, it is concluded that the ILC jet energy
resolution goals can be achieved an HCAL transverse segmenta-
tion of 5! 5 cm2. For higher energy jets going to 3! 3 cm2 leads
to a significant improvement in resolution. From this study there
appears to be no significant motivation for 1! 1 cm2 granularity
over 3! 3 cm2. The results quoted here are for an analogue
scintillator tile calorimeter. The conclusions for a digital, e.g. RPC-
based, HCAL might be different.

9.6. Summary

Based on the above studies, the general features of a detector
designed for high granularity PFlow calorimetry are:

# ECAL and HCAL should be inside the solenoid.
# The detector radius should be as large as possible, the

confusion term scales approximately with the ECAL inner
radius as R$1.

# To fully exploit the potential of PFlow calorimetry the ECAL
transverse segmentation should be at least as fine as
5! 5 mm2.
# For the HCAL longitudinal segmentation considered here, there

is little advantage in transverse segmentation finer than
3! 3 cm2.
# The argument for a very high magnetic field is relatively weak

as the confusion term scales as B$0:3.

These studies, based on the PandoraPFA algorithm, motivated the
design of the ILD detector concept for the ILC as is discussed in
more detail in Chapter 2 of [13].

10. Particle flow for multi-TeV colliders

In this section the potential of PFlow Calorimetry at a multi-
TeV eþ e$ collider, such as CLIC [37], is considered. Before the
results from the LHC are known it is difficult to fully define the jet
energy requirements for a CLIC detector. However, if CLIC is built,
it is likely that the construction will be phased with initial
operation at ILC-like energies followed by high energy operation
at

ffiffi
s
p
& 3 TeV. It has been shown in this paper that PFlow

calorimetry is extremely powerful for ILC energies. Given that
the confusion term increases with energy, it is not a priori clear
that PFlow calorimetry is suitable for higher energies. This
question needs to be considered in the context of the possible
physics measurements where jet energy resolution is likely to be
important at

ffiffi
s
p
& 3 TeV. For example, the reconstruction of the jet

energies in eþ e$-qq events is unlikely to be interest. Assuming
the main physics processes of interest consist of final states with
between six and eight fermions, the likely relevant jet energies
will be in the range 375–500 GeV. To study the potential of the
PFlow calorimetry for these jet energies the ILD concept, which is
optimised for ILC energies, was modified; the HCAL thickness was
increased from 6lI to 8lI and the magnetic field was increased
from 3.5 to 4.0 T. The jet energy resolution obtained for jets from
Z-uu;dd; ss decays at rest are listed in Table 7. For high energy
jets, the effect of the increased HCAL thickness (the dominant
effect) and increased magnetic field is significant. Despite the
increased particle densities, the jet energy resolution ðrms90Þ for
500 GeV jets obtained from PFlow is 3.5%. This is equivalent to
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Fig. 13. (a) The dependence of the jet energy resolution ðrms90Þ on the ECAL transverse segmentation (Silicon pixel size) in the LDCPrime model and (b) the dependence of
the jet energy resolution ðrms90Þ on the HCAL transverse segmentation (scintillator tile size) in the LDCPrime model. The resolutions are obtained from Z-uu ;dd; ss decays
at rest. The errors shown are statistical only.

M.A. Thomson / Nuclear Instruments and Methods in Physics Research A 611 (2009) 25–40 37

ECAL+HCAL

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35
Distance between showers [cm]

Q
ua

lit
y,

 %

1x1cm2x1
3x3cm2x1
5x5cm2x1
3x3cm2x2

1x1cm2x1
3x3cm2x1
5x5cm2x1
3x3cm2x2

ECAL+HCAL

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35
Distance between showers [cm]

Q
ua

lit
y,

 %

1x1cm2x1
3x3cm2x1
5x5cm2x1
3x3cm2x2

1x1cm2x1
3x3cm2x1
5x5cm2x1
3x3cm2x2



MC

Calorimetry for the ILC Felix Sefkow     DESY, May 9, 2014 

MC

Detectors for the ILC Felix Sefkow     Fukuoka, 6.11.2013 

MC

Trends and Perspectives in Calorimetry

Understand particle flow 
performance

• Particle flow is always a gain 
– even at high jet energies 

• HCAL resolution does matter 
– dominates up to ~ 100 GeV 

• Leakage plays a role, too 
– but less than for the calo alone

ARTICLE IN PRESS

neutral hadrons being lost within charged hadron showers. For all
jet energies considered, fragments from charged hadrons, which
tend to be relatively low in energy, do not contribute significantly
to the jet energy resolution.

The numbers in Table 5 can be used to obtain an semi-
empirical parameterisation of the jet energy resolution:

rms90
E

¼
21ffiffiffi
E

p " 0:7" 0:004E" 2:1
E

100

" #0:3

%

where E is the jet energy in GeV. The four terms in the expression,
respectively, represent: the intrinsic calorimetric resolution;
imperfect tracking; leakage and confusion. This functional form
is shown in Fig. 10. It is worth noting that the predicted jet energy
resolutions for 375 and 500GeV jets are in good agreement with
those found for MC events (see Table 3); these data were not used
in the determination of the parameterisation of the jet energy
resolution.

For a significant range of the jet energies relevant for the ILC,
high granularity PFlow results in a jet energy resolution which is
roughly a factor two better than the best achieved at LEP
(sE=E¼ 6:8% at

ffiffi
s

p
¼MZ). The ILC jet energy goal of sE=Eo3:8%

is reached in the jet energy range 40–420GeV.
Fig. 10 also shows a parameterisation of the jet energy

resolution ðrms90Þ obtained from a simple sum of the total

calorimetric energy deposited in the ILD detector concept. The
degradation in energy resolution for high energy jets is due to
non-containment of hadronic showers. It is worth noting that
even for the highest energies jets considered, PFlow reconstruc-
tion significantly improves the resolution compared to the purely
calorimetric approach. The performance of PFlow calorimetry also
is compared to 50%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞ

p
" 3:0% which is intended to give an

indication of the resolution which might be achieved using a
traditional calorimetric approach. This parameterisation effec-
tively assumes an infinitely deep HCAL as it does not correctly
account for the effect of leakage (which is why it deviates
significantly from the ILD Calorimetric only curve at high
energies).

8. Dependence on hadron shower modelling

The results of the above studies rely on the accuracy of the MC
simulation in describing EM and hadronic showers. The Geant4
MC provides a good description of EM showers as has been
demonstrated in a series of test-beam experiments [27] using a
Silicon–Tungsten ECAL of the type assumed for the ILD detector

Table 5
The PFlow jet energy resolution obtained with PandoraPFA broken down into contributions from: intrinsic calorimeter resolution, imperfect tracking, leakage and
confusion.

Contribution Jet Energy Resolution rms90ðEjÞ=Ej

Ej ¼ 45GeV Ej ¼ 100GeV Ej ¼ 180GeV Ej ¼ 250GeV

Total (%) 3.7 2.9 3.0 3.1
Resolution (%) 3.0 2.0 1.6 1.3
Tracking (%) 1.2 0.7 0.8 0.8
Leakage (%) 0.1 0.5 0.8 1.0
Other (%) 0.6 0.5 0.9 1.0
Confusion (%) 1.7 1.8 2.1 2.3

(i) Confusion (photons) (%) 0.8 1.0 1.1 1.3
(ii) Confusion (neutral hadrons) (%) 0.9 1.3 1.7 1.8
(iii) Confusion (charged hadrons) (%) 1.2 0.7 0.5 0.2

The different confusion terms correspond to: (i) hits from photons which are lost in charged hadrons; (ii) hits from neutral hadrons that are lost in charged hadron clusters;
and (iii) hits from charged hadrons that are reconstructed as a neutral hadron cluster.
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Fig. 9. The contributions to the PFlow jet energy resolution obtained with
PandoraPFA as a function of energy. The total is (approximately) the quadrature
sum of the components.
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Fig. 10. The empirical functional form of the jet energy resolution obtained from
PFlow calorimetry (PandoraPFA and the ILD concept). The estimated contribution
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parameterisation of the jet energy resolution obtained from the total calorimetric
energy deposition in the ILD detector. In addition, the dashed curve,
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" 3:0%, is shown to give an indication of the resolution achievable

using a traditional calorimetric approach.
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neutral hadrons being lost within charged hadron showers. For all
jet energies considered, fragments from charged hadrons, which
tend to be relatively low in energy, do not contribute significantly
to the jet energy resolution.

The numbers in Table 5 can be used to obtain an semi-
empirical parameterisation of the jet energy resolution:

rms90
E

¼
21ffiffiffi
E

p " 0:7" 0:004E" 2:1
E

100

" #0:3

%

where E is the jet energy in GeV. The four terms in the expression,
respectively, represent: the intrinsic calorimetric resolution;
imperfect tracking; leakage and confusion. This functional form
is shown in Fig. 10. It is worth noting that the predicted jet energy
resolutions for 375 and 500GeV jets are in good agreement with
those found for MC events (see Table 3); these data were not used
in the determination of the parameterisation of the jet energy
resolution.

For a significant range of the jet energies relevant for the ILC,
high granularity PFlow results in a jet energy resolution which is
roughly a factor two better than the best achieved at LEP
(sE=E¼ 6:8% at

ffiffi
s

p
¼MZ). The ILC jet energy goal of sE=Eo3:8%

is reached in the jet energy range 40–420GeV.
Fig. 10 also shows a parameterisation of the jet energy

resolution ðrms90Þ obtained from a simple sum of the total

calorimetric energy deposited in the ILD detector concept. The
degradation in energy resolution for high energy jets is due to
non-containment of hadronic showers. It is worth noting that
even for the highest energies jets considered, PFlow reconstruc-
tion significantly improves the resolution compared to the purely
calorimetric approach. The performance of PFlow calorimetry also
is compared to 50%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞ

p
" 3:0% which is intended to give an

indication of the resolution which might be achieved using a
traditional calorimetric approach. This parameterisation effec-
tively assumes an infinitely deep HCAL as it does not correctly
account for the effect of leakage (which is why it deviates
significantly from the ILD Calorimetric only curve at high
energies).

8. Dependence on hadron shower modelling

The results of the above studies rely on the accuracy of the MC
simulation in describing EM and hadronic showers. The Geant4
MC provides a good description of EM showers as has been
demonstrated in a series of test-beam experiments [27] using a
Silicon–Tungsten ECAL of the type assumed for the ILD detector

Table 5
The PFlow jet energy resolution obtained with PandoraPFA broken down into contributions from: intrinsic calorimeter resolution, imperfect tracking, leakage and
confusion.

Contribution Jet Energy Resolution rms90ðEjÞ=Ej

Ej ¼ 45GeV Ej ¼ 100GeV Ej ¼ 180GeV Ej ¼ 250GeV

Total (%) 3.7 2.9 3.0 3.1
Resolution (%) 3.0 2.0 1.6 1.3
Tracking (%) 1.2 0.7 0.8 0.8
Leakage (%) 0.1 0.5 0.8 1.0
Other (%) 0.6 0.5 0.9 1.0
Confusion (%) 1.7 1.8 2.1 2.3
(i) Confusion (photons) (%) 0.8 1.0 1.1 1.3
(ii) Confusion (neutral hadrons) (%) 0.9 1.3 1.7 1.8
(iii) Confusion (charged hadrons) (%) 1.2 0.7 0.5 0.2

The different confusion terms correspond to: (i) hits from photons which are lost in charged hadrons; (ii) hits from neutral hadrons that are lost in charged hadron clusters;
and (iii) hits from charged hadrons that are reconstructed as a neutral hadron cluster.
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Fig. 9. The contributions to the PFlow jet energy resolution obtained with
PandoraPFA as a function of energy. The total is (approximately) the quadrature
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Fig. 10. The empirical functional form of the jet energy resolution obtained from
PFlow calorimetry (PandoraPFA and the ILD concept). The estimated contribution
from the confusion term only is shown (dotted). The dot-dashed curve shows a
parameterisation of the jet energy resolution obtained from the total calorimetric
energy deposition in the ILD detector. In addition, the dashed curve,
50%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
" 3:0%, is shown to give an indication of the resolution achievable

using a traditional calorimetric approach.
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MC

Trends and Perspectives in Calorimetry

Understand particle flow 
performance

• Particle flow is always a gain 
– even at high jet energies 

• HCAL resolution does matter 
– dominates up to ~ 100 GeV 

• Leakage plays a role, too 
– but less than for the calo alone
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neutral hadrons being lost within charged hadron showers. For all
jet energies considered, fragments from charged hadrons, which
tend to be relatively low in energy, do not contribute significantly
to the jet energy resolution.

The numbers in Table 5 can be used to obtain an semi-
empirical parameterisation of the jet energy resolution:

rms90
E

¼
21ffiffiffi
E

p " 0:7" 0:004E" 2:1
E

100

" #0:3

%

where E is the jet energy in GeV. The four terms in the expression,
respectively, represent: the intrinsic calorimetric resolution;
imperfect tracking; leakage and confusion. This functional form
is shown in Fig. 10. It is worth noting that the predicted jet energy
resolutions for 375 and 500GeV jets are in good agreement with
those found for MC events (see Table 3); these data were not used
in the determination of the parameterisation of the jet energy
resolution.

For a significant range of the jet energies relevant for the ILC,
high granularity PFlow results in a jet energy resolution which is
roughly a factor two better than the best achieved at LEP
(sE=E¼ 6:8% at

ffiffi
s

p
¼MZ). The ILC jet energy goal of sE=Eo3:8%

is reached in the jet energy range 40–420GeV.
Fig. 10 also shows a parameterisation of the jet energy

resolution ðrms90Þ obtained from a simple sum of the total

calorimetric energy deposited in the ILD detector concept. The
degradation in energy resolution for high energy jets is due to
non-containment of hadronic showers. It is worth noting that
even for the highest energies jets considered, PFlow reconstruc-
tion significantly improves the resolution compared to the purely
calorimetric approach. The performance of PFlow calorimetry also
is compared to 50%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞ

p
" 3:0% which is intended to give an

indication of the resolution which might be achieved using a
traditional calorimetric approach. This parameterisation effec-
tively assumes an infinitely deep HCAL as it does not correctly
account for the effect of leakage (which is why it deviates
significantly from the ILD Calorimetric only curve at high
energies).

8. Dependence on hadron shower modelling

The results of the above studies rely on the accuracy of the MC
simulation in describing EM and hadronic showers. The Geant4
MC provides a good description of EM showers as has been
demonstrated in a series of test-beam experiments [27] using a
Silicon–Tungsten ECAL of the type assumed for the ILD detector

Table 5
The PFlow jet energy resolution obtained with PandoraPFA broken down into contributions from: intrinsic calorimeter resolution, imperfect tracking, leakage and
confusion.

Contribution Jet Energy Resolution rms90ðEjÞ=Ej

Ej ¼ 45GeV Ej ¼ 100GeV Ej ¼ 180GeV Ej ¼ 250GeV

Total (%) 3.7 2.9 3.0 3.1
Resolution (%) 3.0 2.0 1.6 1.3
Tracking (%) 1.2 0.7 0.8 0.8
Leakage (%) 0.1 0.5 0.8 1.0
Other (%) 0.6 0.5 0.9 1.0
Confusion (%) 1.7 1.8 2.1 2.3

(i) Confusion (photons) (%) 0.8 1.0 1.1 1.3
(ii) Confusion (neutral hadrons) (%) 0.9 1.3 1.7 1.8
(iii) Confusion (charged hadrons) (%) 1.2 0.7 0.5 0.2

The different confusion terms correspond to: (i) hits from photons which are lost in charged hadrons; (ii) hits from neutral hadrons that are lost in charged hadron clusters;
and (iii) hits from charged hadrons that are reconstructed as a neutral hadron cluster.
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Fig. 9. The contributions to the PFlow jet energy resolution obtained with
PandoraPFA as a function of energy. The total is (approximately) the quadrature
sum of the components.
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Fig. 10. The empirical functional form of the jet energy resolution obtained from
PFlow calorimetry (PandoraPFA and the ILD concept). The estimated contribution
from the confusion term only is shown (dotted). The dot-dashed curve shows a
parameterisation of the jet energy resolution obtained from the total calorimetric
energy deposition in the ILD detector. In addition, the dashed curve,
50%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
" 3:0%, is shown to give an indication of the resolution achievable

using a traditional calorimetric approach.
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neutral hadrons being lost within charged hadron showers. For all
jet energies considered, fragments from charged hadrons, which
tend to be relatively low in energy, do not contribute significantly
to the jet energy resolution.

The numbers in Table 5 can be used to obtain an semi-
empirical parameterisation of the jet energy resolution:

rms90
E

¼
21ffiffiffi
E

p " 0:7" 0:004E" 2:1
E

100

" #0:3

%

where E is the jet energy in GeV. The four terms in the expression,
respectively, represent: the intrinsic calorimetric resolution;
imperfect tracking; leakage and confusion. This functional form
is shown in Fig. 10. It is worth noting that the predicted jet energy
resolutions for 375 and 500GeV jets are in good agreement with
those found for MC events (see Table 3); these data were not used
in the determination of the parameterisation of the jet energy
resolution.

For a significant range of the jet energies relevant for the ILC,
high granularity PFlow results in a jet energy resolution which is
roughly a factor two better than the best achieved at LEP
(sE=E¼ 6:8% at

ffiffi
s

p
¼MZ). The ILC jet energy goal of sE=Eo3:8%

is reached in the jet energy range 40–420GeV.
Fig. 10 also shows a parameterisation of the jet energy

resolution ðrms90Þ obtained from a simple sum of the total

calorimetric energy deposited in the ILD detector concept. The
degradation in energy resolution for high energy jets is due to
non-containment of hadronic showers. It is worth noting that
even for the highest energies jets considered, PFlow reconstruc-
tion significantly improves the resolution compared to the purely
calorimetric approach. The performance of PFlow calorimetry also
is compared to 50%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞ

p
" 3:0% which is intended to give an

indication of the resolution which might be achieved using a
traditional calorimetric approach. This parameterisation effec-
tively assumes an infinitely deep HCAL as it does not correctly
account for the effect of leakage (which is why it deviates
significantly from the ILD Calorimetric only curve at high
energies).

8. Dependence on hadron shower modelling

The results of the above studies rely on the accuracy of the MC
simulation in describing EM and hadronic showers. The Geant4
MC provides a good description of EM showers as has been
demonstrated in a series of test-beam experiments [27] using a
Silicon–Tungsten ECAL of the type assumed for the ILD detector

Table 5
The PFlow jet energy resolution obtained with PandoraPFA broken down into contributions from: intrinsic calorimeter resolution, imperfect tracking, leakage and
confusion.

Contribution Jet Energy Resolution rms90ðEjÞ=Ej

Ej ¼ 45GeV Ej ¼ 100GeV Ej ¼ 180GeV Ej ¼ 250GeV

Total (%) 3.7 2.9 3.0 3.1
Resolution (%) 3.0 2.0 1.6 1.3
Tracking (%) 1.2 0.7 0.8 0.8
Leakage (%) 0.1 0.5 0.8 1.0
Other (%) 0.6 0.5 0.9 1.0
Confusion (%) 1.7 1.8 2.1 2.3
(i) Confusion (photons) (%) 0.8 1.0 1.1 1.3
(ii) Confusion (neutral hadrons) (%) 0.9 1.3 1.7 1.8
(iii) Confusion (charged hadrons) (%) 1.2 0.7 0.5 0.2

The different confusion terms correspond to: (i) hits from photons which are lost in charged hadrons; (ii) hits from neutral hadrons that are lost in charged hadron clusters;
and (iii) hits from charged hadrons that are reconstructed as a neutral hadron cluster.
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Fig. 9. The contributions to the PFlow jet energy resolution obtained with
PandoraPFA as a function of energy. The total is (approximately) the quadrature
sum of the components.
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Fig. 10. The empirical functional form of the jet energy resolution obtained from
PFlow calorimetry (PandoraPFA and the ILD concept). The estimated contribution
from the confusion term only is shown (dotted). The dot-dashed curve shows a
parameterisation of the jet energy resolution obtained from the total calorimetric
energy deposition in the ILD detector. In addition, the dashed curve,
50%=
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p
" 3:0%, is shown to give an indication of the resolution achievable

using a traditional calorimetric approach.
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Total Res. (250 GeV) 3.1 
%Confusion 2.3 
%   i) Photons 1.3 
%  ii) Neutral hadrons 1.8 
% iii) Charged hadrons 0.2 
%

13M.Thomson, Nucl.Instrum.Meth. A611 (2009) 25-40
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ECAL optimisation

• longitudinal segmentation drives resolution 
– impact mostly at low energy 

• transverse segmentation drives photon hadron separation 
– impact at high energy 
– little impact on hadron hadron separation → HCAL  

• technology choice driven by operational issues and cost 

14
J. S. Marshall ECAL Simulation Studies

Two Granularity & Layer Reduction

24

• Finally, study ECAL layer reduction in the context of a two granularity model. The W absorber 
thicknesses remain as described on slide 21, but the transverse granularities are:

30 layers 10L(5x5mm2) + 20L(15x15mm2)

26 layers   9L(5x5mm2) + 17L(15x15mm2)

20 layers   7L(5x5mm2) + 13L(15x15mm2)

16 layers   6L(5x5mm2) + 10L(15x15mm2)

• Maintain roughly constant fraction of total 
layers with 5x5mm2 granularity.

• As expected, resolutions flat wrt layer 
number at high Ej; performance closer to 
constant 5x5mm2 than 15x15mm2.

J. S. Marshall ECAL Optimisation Studies

Confusion vs. Cell Size

!8

• Total confusion represents difference between reconstructed resolution and perfect PFA; it 
comprises neutral hadron confusion, photon confusion and all “other” remaining contributions."

• As could infer from earlier plots, neutral hadron confusion contribution is essentially flat with 
respect to ECAL cell size, whilst photon confusion increases significantly."

• The loss of photons is also clearly evident from a plot of mean di-jet energies vs. ECAL cell size.

• Can examine changes in performance between different algorithm configurations to explicitly 
determine confusion contributions. Contributions to overall resolution enter in quadrature. 

5x5 & 15x15
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Calorimeter cost

• Costing is at a very early stage 
• Yet, many lessons learnt from 2nd 

generation prototypes 
• Example HCAL: 
• example ILD scint HCAL: 45M 

– 10M fix, rest ~ volume 
– 10M absorber, rest ~ area (nLayer) 
– 16M PCB, scint, rest ~ channels 
– 10 M SiPMs and ASICs 

• ECAL: 
• main cost driver: silicon area 
• ILD 2500 m2, SiD 1200 m2  

– cf. CMS tracker 200 m2  
– cf. CMS ECAL+HCAL endcap 600 m2

15

ILD

7.3. ILD cost evaluation

Figure III-7.2
Summary plot of the
relative contribution
by the di�erent sub-
components to the
total cost of the ILD
detector.

7.3.6 Muon system

The muon system being made of scintillator read out with SiPM like the AHCAL, the costs have been
derived from there. It corresponds mostly to the procurements of materials without assembly and
tooling. The cost is dominated by the costs if the sensor system. In total 6.5 MILCU is estimated.

7.3.7 Cost summary

The total cost of the ILD detector is summarised in Table III-7.7. The distribution of the costs
Table III-7.7
Summary table of the
cost estimate of the
ILD detector. Depend-
ing on the options used
the cost range is be-
tween 336 Mio ILCU
and 421 Mio ILCU.

System Option Cost [MILCU] Mean Cost [MILCU]

Vertex 3.4
Silicon tracking inner 2.3 2.3
Silicon tracking outer 21.0 21.0
TPC 35.9 35.9
ECAL 116.9

SiECAL 157.7
ScECAL 74.0

HCAL 44.9
AHCAL 44.9
SDHCAL 44.8

FCAL 8.1 8.1
Muon 6.5 6.5
Coil, incl anciliaries 38.0 38.0
Yoke 95.0 95.0
Beamtube 0.5 0.5
Global DAQ 1.1 1.1
Integration 1.5 1.5
Global Transportation 12.0 12.0

Sum ILD 391.8

among the di�erent systems is shown in Figure III-7.2.
The cost driving items are the yoke, and the calorimeter system. The cost for the integration

is an estimate of the scenario described in section 5.1, and might vary significantly with di�erent
scenarios. It includes the extra cost for the large platform (see chapter 5.5.1) on which the detectors
moves, as well as the extra costs of the cryogenics needed to allow a cold move of the detector. The
o�ine computing represents a significant cost. Owing to the continued large advances in computing
technology, we have estimated this at 20% of the equivalent cost for a LHC detector.

A first estimate of the person-power needed has been done. For each calorimeter it is estimate to
be around 200 MY, for the coil, 500 MY. From this the total person-power needed is extrapolated to

Detectors: ILD Detailed Baseline Design ILC Technical Design Report: Volume 4, Part III 309

fraction 
of 392

Chapter 12. SiD Costs

Table II-12.2
Summary of Costs per
Subsystem.

M&S M&S
Base Contingency Engineering Technical Admin

(M US-$) (M US-$) (MY) (MY) (MY)

Beamline Systems 3.7 1.4 4.0 10.0
VXD 2.8 2.0 8.0 13.2
Tracker 18.5 7.0 24.0 53.2
ECAL 104.8 47.1 13.0 288.0
HCAL 51.2 23.6 13.0 28.1
Muon System 8.3 3.0 5.0 22.1
Electronics 4.9 1.6 44.1 41.7
Magnet 115.7 39.7 28.3 11.8
Installation 4.1 1.1 4.5 46.0
Management 0.9 0.2 42.0 18.0 30.0

314.9 126.7 186.0 532.1 30.0

Structure using the SLAC program WBS. WBS facilitates the description of the costs as a hierarchical
breakdown with increasing levels of detail. Separate tables describe cost estimates for purchased
M&S and labour. These tables include contingencies for each item, and these contingencies are
propagated by WBS. The M&S costs are estimated in 2008 US-$ except for those items described in
Table II-12.1.

Labour is estimated in man-hours or man-years as convenient. The WBS had about 50 labour
types, but they are condensed to engineering, technical, and clerical for this estimate. The statement
of base M&S and labour in man-years by the three categories results in a cost which we believe is
comparable to that used by the ILC machine, and is referred to here as the ILC cost.

Contingency is estimated for each quantity to estimate the uncertainties in the costs of the
detector components. However, we do not use the ILC value system for these estimates. Items
which are commodities, such as detector iron, have had costs swinging wildly over the last few years.
While there is agreement on a set of important unit costs, those quantities also have ”error margins”.
SiD, ILD, and CLIC have worked together to reach agreed values for some unit costs as shown in
Table II-12.1.
Figure II-12.1
Subsystem M&S Costs
in million US-$, the
error bars show the
contingency per subsys-
tem.
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There are a substantial set of interfaces in the interaction region hall. For the purpose of this
estimate, the following has been assumed:

• The hall itself, with finished surfaces, lighting, and HVAC are provided by the machine.

• Utilities, including 480 VAC power, LCW, compressed air, and Internet connections are provided.

• An external He compressor system with piping to the hall is provided. The refrigeration and
associated piping is an SiD cost.

• All surface buildings, gantry cranes, and hall cranes are provided by the machine.

174 ILC Technical Design Report: Volume 4, Part II
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Main ideas:

!
• Linear collider physics demands 3-4% jet energy resolution, 

which cannot be achieved with classical calorimetry 
!

• Particle flow detectors achieve this precision over a wide 
energy range for ILC and CLIC  
– and under CLIC background and pile-up conditions  
!

• Particle flow calorimeters feature good energy resolution and 
high granularity 
!

• Detector cost is driven by instrumented area rather than 
channel count

16



Test beam validation 

17



MC

Calorimetry for the ILC Felix Sefkow     DESY, May 9, 2014 

Calorimeter technologies

• ILD, SiD 
• ILC, CLIC

18

or semi-digital 

full prototypes
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Test beam experiments

DESY 2005 
SiECAL

CERN 2006-2007 
add Scint HCAL

FNAL 2008-09 
Si -> Sci ECAL

19
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+ Test beam experiments 

CERN 2012 
2nd generation 

scint HCAL 

CERN  
2010-11 
Tungesten 
AHCAL 
2012: 
DHCAL 

FNAL2010-11: 
 m3 Fe DHCAL 

20

CERN 2012: 
 m3 SDHCAL

  

DESY 2012 
2nd generation 

SiW ECAL



MC

EM shower  

11

6years

linearitydeviation from lin.
energy resolution

CALICE ECAL performance
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π+

π0

e

W Si W Scint

Energy resolution  
Same Method as beam data analysis 

Simulation Prototype Volume 

18 

Center value 

12.9 ± 0.1(stat.) ± 0.4 (syst.)% 

1.2± 0.1(stat.)          (syst.)%    .
   .   

Beam data 

0.49 ± 0.1(stat.)           (syst.)%    .
   .   

13.20 ± 0.08 (stat.) ± 0.45 (syst.) 

Simulation result is in good agreement with Beam data result. 

We quadratically subtract beam momentum spread from measured width   

 


  


  

  

  


 

 

• data and sim agree  

NIM	  A608	  (2009)	  372
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MC

Felix Sefkow     

SiD ECAL

• SiD made some ambitious design 
choices 
– most compact ECAL 

• smallest RMoliere 
– most light-weight Silicon tracker  
– both based on KPiX chip (1024 ch) 
– directly bonded to wafer 

• ECAL: no PCB 
– 1.1 mm thin active gap

22

July 2013 
9 layers in the beam  

at SLAC End Station A 
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Scintillator HCAL performance

• 38 layer steel and tungsten  
• 7608 channels: first large scale 

SiPM application 
• very robust: 6 years of data taking 

at DESY, CERN, Fermilab 
• a very good calorimeter, too 

23
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Figure 4. Energy resolution versus beam energy without compensation and after local and global software
compensation. The curves show fits using Equation 2.2, with the black solid line showing the fit to the
uncorrected resolution, the red dotted line to the global software compensation and the blue dashed line to
the local software compensation. The stochastic term is (57.6± 0.4)%, (45.8± 0.3)% and (44.3± 0.3)%,
with constant terms of (1.6± 0.3)%, (1.6± 0.2)% and (1.8± 0.3)% for the uncorrected resolution, global
software compensation and local software compensation, respectively.

signal by a single energy-independent factor accounting for the non-measured energy depositions
in the passive absorber material.

The calorimeter response to hadron-induced showers is more complicated [14], since these
showers have contributions from two different components: an electromagnetic component, origi-
nating primarily from the production of p0s and hs and their subsequent decay into photon pairs;
and a purely hadronic component. The latter includes “invisible” components from the energy
loss due to the break-up of absorber nuclei, from low-energy particles absorbed in passive material
and from undetected neutrons, depending on the active material. This typically leads to a reduced
response of the calorimeter to energy in the hadronic component, and thus overall to a smaller
calorimeter response to hadrons compared to electromagnetic particles of the same energy. Since
the production of p0s and hs are statistical processes, the relative size of the two shower compo-
nents fluctuates from shower to shower, which, combined with the differences in visible signal for
electromagnetic and purely hadronic energy deposits, leads to a deterioration of the energy resolu-
tion. In addition, the average fraction of energy in the electromagnetic component depends on the
number of subsequent inelastic hadronic interactions and thus on the initial particle energy. The
electromagnetic fraction of hadronic showers increases with increasing particle energy [15], often
resulting in a non-linear response for non-compensating calorimeters.

– 8 –

σ/E = 45.1%/√E ⊕1.7% ⊕ 0.18/E

JINST	  7,	  P00917	  (2012)software compensation
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Digital RPC HCAL

• Resistive plate chambers 
• 1x1cm2 pads, 1 bit read-out 
• 500’000 channels 
• digitisation electronics embedded 
• tested with steel and tungsten 
• digital calorimetry does work

24

Digital Hadron Calorimeter (DHCAL)!

2*

Concept(of(the(DHCAL(
*
• *Imaging*hadron*calorimeter*
op)mized*for*use*with*PFA***

• *1Cbit*(digital)*readout*

• *1*x*1*cm2*pads*read*out*individually*
(embedded*into*calorimeter!) **

• *Resis)ve*Plate*Chambers*(RPCs)*as*
ac)ve*elements,*between*steel/
tungsten*

  Each*layer**with*an*area*of*~*1*x*1**m2*is*read*
out*by*96*x*96*pads.*

  The*DHCAL*prototype*has*up*to*54*layers*
including*the*tail*catcher*(TCMT)*~*0.5M*
readout*channels*(world*record*in*calorimetry!)*

*
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Semi-digital RPC HCAL

• 48 RPC layers, 1cm2 pads 
• embedded electronics 

– power-cycled 
• 2 bit, 3 threshold read-out 

– mitigate resolution degradation 
at high energy

25

SDHCAL RPC (50 units)

!Large detectors : 100X100 cm2 RPC 
!Electronics :  HARDROC, embedded 
!Readout : one side of the 1m2

! Cassette design : ok, part of the absorber 
! DAQ : ok, not the final

CALICE meeting, Argonne March 2014

1m3 prototype CAN-037aDescription CERN SPS TB & Data Taking Particle Identification Energy Response Summary back-up

Binary vs Multi-threshold
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SDHCAL binary mode
SDHCAL multi-threshold mode

CALICE PRELIMINARY

• Raw resolution (untuned calorimeter) in
two modes Binary and Multi-threshold

• Raw performances ∆ no pattern
recognition

• Response to single pions
• electron and muon rejection
• leakage reduction

• Visible improvement of resolution for
E

beam

Ø 50 GeV (‡(E)/E Æ 10% at
80 GeV)

Yacine Haddad ( LLR ) First Results of the SDHCAL technological prototype 22 avril 2013 17 / 26
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Validation of Geant 4 models

• just a few 
examples 

• altogether at 
5% or better

26
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Figure 14. Longitudinal energy profiles for 12 GeV π− data (shown as points), compared with simulations
using different physics lists. The mean energy in MIPs is plotted against the depth after the initial interaction,
in units of effective 1.4 mm tungsten layers. The total depth shown corresponds to ∼ 20 X0 or 0.8 λint.. The
breakdown of the Monte Carlo into the energy deposited by different particle categories is also indicated.

 Depth
0 10 20 30 40 50

<E
> 

/M
IP

s

0

10

20

30

40

50

60
  QGSP_BERT-π8 GeV 

 Depth
0 10 20 30 40 500

10

20

30

40

50

60

70
  QGSP_BERT-π12 GeV 

 Depth
0 10 20 30 40 500

20

40

60

80

100   QGSP_BERT-π20 GeV 

 Depth
0 10 20 30 40 500

20

40

60

80

100

120

140

160   QGSP_BERT+π30 GeV 
others
protons
electrons
positrons
mesons
Monte Carlo : all
CALICE

 Depth
0 10 20 30 40 50

<E
> 

/M
IP

s

0

10

20

30

40

50

60
  FTFP_BERT-π8 GeV 

 Depth
0 10 20 30 40 500

10

20

30

40

50

60

70
  FTFP_BERT-π12 GeV 

 Depth
0 10 20 30 40 500

20

40

60

80

100   FTFP_BERT-π20 GeV 

 Depth
0 10 20 30 40 500

20

40

60

80

100

120

140

160   FTFP_BERT+π30 GeV 

Figure 15. Longitudinal energy profiles for data (shown as points) compared with simulations using two
physics lists, QGSP_BERT and FTFP_BERT, at four typical energies. The breakdown of the Monte Carlo
into the energy deposited by different particle categories is also indicated.

giving the best description. In the tails, most models lie within ∼10% of data; LHEP is consistently
low, as is FTF_BIC at lower energies.

On balance, it appears that the FTFP_BERT physics list, while not perfect, gives the best
overall description of the longitudinal development of these showers. We emphasise, however, that
this remark refers only to the early part of the shower which is developed in the ECAL; we are not
sensitive to the later parts of the shower.

– 17 –

SiW ECAL 
longit. profile

Response and resolution

p/⇡ ratio from test beam data and simulations
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Good prediction by QGSP BERT, QBBC and CHIPS

Underestimated by FTFP BERT and FTF BIC

Marina Chadeeva (ITEP) CHEF 2013, Paris, France April 22-25, 2013 7 / 14
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Leakage estimation

• Exploit the 3-D granularity 
• ECAL 1λ, HCAL 4.5λ 
• Observables 

– shower start  
– energy fraction in rear layers 
– measured energy
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Shower fine structure

• Could have had the same 
global parameters with 
“clouds” or “trees” 

• Powerful tool to check 
models 

• Surprisingly good 
agreement already - for 
more recent models

Frank Simon (frank.simon@universe-cluster.de)Particle Showers in a Highly Granular HCAL
CALOR2010, Beijing, China

Digging Deeper: 3D Substructure - Particle Tracks

11

Beam
25 GeV "-

ECAL upstream

identified tracks

• Imaging capability of detector 

allows the identification of 

individual MIP-like tracks 

within hadronic showers
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Shower fine structure

• Could have had the same 
global parameters with 
“clouds” or “trees” 

• Powerful tool to check 
models 

• Surprisingly good 
agreement already - for 
more recent models

Frank Simon (frank.simon@universe-cluster.de)Particle Showers in a Highly Granular HCAL
CALOR2010, Beijing, China

Digging Deeper: 3D Substructure - Particle Tracks

11

Beam
25 GeV "-

ECAL upstream

identified tracks

• Imaging capability of detector 

allows the identification of 

individual MIP-like tracks 

within hadronic showers
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PFLOW with test beam data

• The “double-track resolution” of an imaging calorimeter  
• Small occupancy: use of event mixing technique possible 
• test resolution degradation if second particle comes closer 
• Important: agreement data - simulation

29

20/43

 

Particle Flow with test beam data

Test MC models with important particle flow analysis!

Method:

Take 2 pion events and 
map them to ILD 
geometry

Assume one is neutral

Vary distance between 
the 2 pions and test 
how well the energy 
of neutral hadron is 
reconstructed

30 GeV charged 
hadron

10 GeV 'neutral' 
hadron

~18 cm separation 
of shower

~7 cm separation 
of shower

6 CALORIMETRY
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Fig. 6.11: ECAL plus AHCAL combined resolution for pions. The upper curve represents the resolu-
tion obtained with a single weight factor for each of the calorimeters, while the lower reflects a simple
software compensation approach and uses weights for the hits that depend on the hit amplitude and on
the total measured shower energy.
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Figure 4. RMS (left) and RMS90 (right) deviations of the recovered energy of neutral 10 GeV hadrons
from its measured energy vs. the distance from charged 10 GeV (circles and continuous lines) and 30 GeV
(triangles and dashed lines) hadrons for beam data (black) and for Monte Carlo simulated data, for both
LHEP (red) and QGSP_BERT (green) physics lists.
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Figure 5. Probability of neutral 10 GeV hadrons energy recovering within 3 (left) and 2 (right) standard
deviations from its real energy vs. the distance from charged 10 GeV (circles and continuous lines) and
30 GeV (triangles and dashed lines) hadrons for beam data (black) and for Monte Carlo simulated data, for
both LHEP (red) and QGSP_BERT (green) physics lists.

This results in a smaller probability of neutral hadron energy recovery for small neutral hadron
energy (see right plot in figure 6).

– 9 –

Fig. 6.12: Probability of separating hadron showers: The figure shows the degradation of neutral particle
resolution, expressed in terms of the probability to reconstruct the energy within 3 s of its calorimetric
resolution, as a function of transverse separation from a second shower induced by a charged hadron.

6.3.3.2 AHCAL Test Beam Results using Tungsten Absorbers
To test the energy resolution and timing performance of a tungsten-scintillator combination calorimeter,
and to validate the corresponding simulation model, a 30-layer (3.9 lI) AHCAL module was constructed
and exposed to beam at CERN in 2010. The scintillator tile and readout layers are the same as used by
CALICE for a number of earlier tests with steel absorber plates. Figure 6.13 shows the experimental
setup and an example of a pion candidate shower in the calorimeter stack.

High statistics event samples were recorded for electron, muon, pion, and proton beams with
energies from 1 to 10 GeV. Gain calibration was obtained from low intensity LED-pulser runs and the
results agree well with previous calibration from runs at Fermilab. MIP calibration was carried out using
a muon beam. Examples of calorimeter responses to muons and pions are shown in Figure 6.14.

Preliminary results indicate that the electromagnetic resolution is slightly worse than for steel,

124

10 GeV neutral +

Si W ECAL & Scint HCAL 

JINST 6 (2011) P07005

http://iopscience.iop.org/1748-0221/6/07/P07005
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What we learnt

!
• The novel ECAL and HCAL technologies work as expected 

– Si W ECAL and Sci Fe AHCAL analysis nearly complete 
– Analysis of the more recent tests has just begun, but all results so 

far are encouraging - still a huge potential 
• The detector simulations are verified with electromagnetic data. 
• The hadronic performance is as expected, including software 

compensation. 
• The Geant 4 shower models reproduce the data with few % 

accuracy. 
– Time structure is reproduced by HP simulations. 

• Shower substructure can be resolved and is also reproduced by 
shower simulations. 

• Particle flow algorithms are validated with test beam data.

30



Current trends 
!
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MC

Technological prototypes

• Electronics integration, power pulsing 
• Compact design: absorbers and PCBs 
• Scalability  
!

• Integration solutions exist 
• Components were prototyped 
• Si ECAL, scintillator HCAL: small set-ups tested, 

<10 small layers 
• Gas HCAL: the only large 2nd gen prototype 
• None addresses all integration issues yet 
• Funding limited

32

  

ECAL 

sDHCAL 

AHCAL 
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MC

System integration & Tooling

33

CALICE Meeting   Annecy 09 / 2013 Konrad Briggl, Rene Hagdorn

Status of the LTT Prototype
● Movement and measurement fully automatized

● Synchronization between positioning and 

measurement working

● Electronic noise levels as expected

● Stable Alignment of Readout head to pins on tile palette

       → ready for first dark spectra measurements

To do:

– Validate stable electric connectivity

– Optical fibers to be reattached and optimized for 
uniformity

– System for reading QR codes of tiles.

– Scripts for parsing initial database informations 
(e.g. Tile ID from QR code)

LCWS conference – Nov. 2013 - Tokyo – remi.cornat@in2p3.fr 15 

 
Developing a leak-less water cooling system 

 Total ECAL power dissipation O(10 kW)  
Needs active cooling system (cold water pipe + radiator) 
Limits: temperature differences within ECAL    
 heat transfer to neighboring detectors 
                  integration 

 

Cooling tests in demonstrator module 
Thermal simulations of detector modules 

Copper plate – heat exchanger interface 

LCWS conference – Nov. 2013 - Tokyo – remi.cornat@in2p3.fr 18 

Assembly of first SLABs 

Gluing and positioning robot 
 
Process is well under control  

First approach of an assembly procedure 
toward automation and industrialization 

LCWS conference – Nov. 2013 - Tokyo – remi.cornat@in2p3.fr 7 

Detector slab : “extreme” design 
Compact assembly of 2 layers of 1 to 8 Active Sensor Units (ASU) 
 
1 ASU = 1 kapton (HV bias for PIN diodes) 
            + 1 layer PIN diodes 
            + 1 PCB with microchips embeded (bonded at CERN) 
            + 1 thermal drain (copper) 
 
PCB is critical : 1.2 mm tick, 8 layers, chips bounded into 
100 µm flatness targeted 
(500 µ obtained: issue for gluing sensors) 
 
Board exists and partly 
tested (pedestals). 
 
R&D task to be continued 

Short version 

25/09/2013 ILD 2013, Krakow, Poland 3

Large GRPC for ILD:

GRPC with a surface 
≤  3 m2 are needed.

We intend to build 
a 2m2 GRPC 
(glass are already there).

We are currently studying
the gas distribution system
to ensure a good gas 
renewal.   

2 m1 m

inlet

outlet

Finalize Baseline Detector : large GRPC
Chips on board

Si wafer  
glueing robot

ECAL leak-less  
cooling system

SiPM and tile  
test stand

AHCAL data  
concentrator

RPC gas  
distribution 
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MC

AHCAL Developments  Felix Sefkow     CERN, February 5, 2014

MC

Felix Sefkow   

Industrialisation: Numbers!

• The AHCAL 
!

• 60 sub-modules 
!

• 3000 layers 
!

• 10,000 slabs 
!

• 60,000 HBUs 
!

• 200’000 ASICs 
!

• 8,000,000 tiles and SiPMs

34

• One year 
!

• 46 weeks 
!

• 230 days 
!

• 2000 hours 
!
!

• 100,000 minutes 
!
!

• 7,000,000 seconds

Katja Krüger  |  AHCAL prototype overview   |  10 Sept 2013  |  Page 16/16

Conclusions and Outlook

preparations for a full engineering prototype:

> multi-layer DAQ: first version running, next steps:
 integration of LDA
 switch to HDMI readout

> work on quality assurance & infrastructure

> more hardware, especially tiles+SiPMs, 
in production

next testbeams at DESY:
> 1 week in October 2013
> 11 days in December 2013
> 2 weeks in January 2014

Katja Krüger  |  AHCAL prototype overview   |  10 Sept 2013  |  Page 3/16

going from 1 HBU to a detector prototype: 1D 

> single HBUs extensively tested and calibrated in lab
> cross check the calibration and the uniformity of all channels on one 

chip with MIPs in testbeam
> operation of a slab with 6 HBUs
> power pulsing with a full slab: started (more details in talk by S. Chen)

Mathias Reinecke  |  CALICE meeting  |  Sept. 10th, 2013  |  Page 5 

New 8 HBU2 boards 

> All 8 new HBU2s have been tested 
and work fine. 

> Problem: Significant spread of board 
dimensions within the 8 boards. 
Landmarks differ up to 0.4mm 
(0.1mm was specified). 

> Problems during PCB assembly and 
with the steel cassettes (individual 
cassettes needed). 

> From the discussion with PCB manufacturer: For the next order, there will be 
a pre-compensation process step for the inner pcb layers before the pressing 
operation. This will solve the problem as it did for the first 6 HBUs.   

Katja Krüger  |  AHCAL prototype overview   |  10 Sept 2013  |  Page 14/16

Going mass production: more tiles+SiPMs

> ITEP produced direct-readout tiles (+ Ketek 
SiPMs with 12100 pixels) for 2 HBUs, 
paperwork ongoing

> NIU: 1 HBU with top-view SiPMs being tested
> Uni HH produced direct-readout tiles for 

8 HBUs, Ketek SiPMs with 2300 pixels for 
8 HBUs delivered and being tested now
(more details in talk by K. Briggl)

> expect Hamamatsu MPPCs for 4 HBUs from 
Japan, ITEP agreed to produce direct-readout 
tiles 

> mass assembly: talk by P. Chau
> testing several different options now, but for

practical reasons will need to converge to
1 or 2 for larger prototypes (but this will not be 
an advance decision for ILD calo)

ITEP

Uni HH
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MC

Directions in tile and SiPM R&D

• Revise tile design in view of 
automatic pick & place 
procedures 

• Consider SMD approach, 
originally proposed by NIU 

• Light yield becomes an 
issue again 
– build on advances in SiPMs 

• Very different assembly, QC 
and characterisation chain

35
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NIU Megatile

NIU concept: Surface mounted SiPMs

SiPMs mounted on top of tile

Concave dimple in tile for uniformity

Megatile scintillator

18*18cm2 divided into 3*3cm2 cells

Optical isolation by white epoxy

Easy assembly

SiPMs assembled like standard 
components

Scintillator is equipped in larger pieces

Modified HBU designed and produced at 
DESY

First calibration spectra obtained by 
NIU

NIU

Mainz
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Uni HH

board coming to life

NIU

7608 ch!
physics !
prototype

ITEP

ITEP

MPI

6

UHH tiles: wrapping

Wrapping:
● Tiles are wrapped with 3M Vikuiti reflector foil

➔ 65 μm thick
➔ 98% reflectivity

● Foil cut with laser cutter;
➔ Hole for SiPM monitoring via LED on the HBU
➔ Cut for two different hole positions

● mechanically wrapped around the tile;
● Fixed with sticker with QR code for unique identification
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75% of LED positions

UHH

9 / 1909 Dec 2013

The setup

● SiPM in the upper mirror

ITEP

Setup: Hamamatsu MPPC 1x1mm² 

25.04.2014 8 

MPPC S12571-025P soldered on PCB 

3M reflective foil glued on PCB (round 
hole in center: diameter 4mm) 

H=1.3 mm 

5.0 mm 

30 mm 

3 
m

m
 

MPPC S12571 package (0.85mm thick): 

Yong Liu, Meeting on Integrated Readout Layer Development  

• MPPC Package thickess: 0.85mm 
• Fully inside dimple without spacer 

 
• „Ripples“  seen  around  hole 

• Hole cutting/drilling will be optimized 
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MC

Scintillator HCAL

Flexible test beam roadmap

• 2013-14:  
– e.m. stack, 10-15 layers, 

~1200 ch 
!

• 2014-15:  
– hadron stack with shower 

start finder, 20-30 HBUs, ~ 
4000 ch 
!

• 2016-18: 
– hadron prototype, 20-40 

layers, 10-20,000 ch 
!

• Gradual SiPM and tile 
technology down-select 

• Exercise mass production 
and QC procedures 

36

Fe and W
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Conclusion

37

• Calorimetry has changed - particle flow concept 
established experimentally 
!

• Now fully in second phase: make it realistic 
!

• There are many open issues = room for new ideas
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AHCAL groups in CALICE

38

Uni Bergen

Prag
Northern  
Illinois Uni

DESY

CERN

Uni Hamburg

Omega@LLR

Dubna

ITEP

MPI München

Uni Wuppertal Uni Mainz
Uni Heidelberg

Matsumoto, 
Japan

thanks, Katja!
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AHCAL groups in CALICE

38

Uni Bergen

Prag
Northern  
Illinois Uni

DESY

CERN

Uni Hamburg

Omega@LLR

Dubna

ITEP

MPI München

Uni Wuppertal Uni Mainz
Uni Heidelberg

Matsumoto, 
Japan

thanks, Katja!

Recent additions:
U Tokyo (S.Komamiya)
U Birmingham (N. Watson)
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Higgs signal in Z recoil 

• In e+e-, use kinematic 
constraints 

• recoil mass against Z  
– M2 = E2-p2 
– beam energy: E = √s-EZ, p=pZ 
– (Z mass: EZ2 = MZ2 + pZ2) 
!

• No use of Higgs final state, can 
even be invisible  

• Model-independent ZH cross 
section 

• Absolute normalisation for BRs 
– sensitive to invisible decays 

• Direct extraction of gZ

40

works best with muons,  
also well with electrons 
jets: not so easy 

Chapter 2. Higgs Boson

Z

Z
He+

e< i

i<

W

W
H

e+
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H

e+
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Z

Z

e+

e<

Figure 2.6. Feynman diagrams for the three major Higgs production processes at the ILC: e+e≠ æ Zh (left),
e+e≠ æ ‹‹H (center), and e+e≠ æ e+e≠H (right).

promising bb““ final state was studied in Ref. [73]. The expected triple-Higgs coupling sensitivity
can be expressed as �⁄hhh © ⁄/⁄

SM

≠ 1, assuming no new particles contribute to the gg æ h and
gg æ hh loops. The results, summarized in Table 2.1, indicate that only order-1 sensitivity will be
possible.

The ATLAS submission to the European Strategy Study [62], gives some new results on the
measurement of the triple Higgs coupling. The report estimates that, with 3000 fb≠1 and combining
both LHC experiments, “a ≥ 30% measurement of ⁄HHH may be achieved”. We look forward to the
studies, not yet reported, that will support this conclusion.

2.4 Higgs measurements at ILC at 250 GeV

The physics program of the LHC should be contrasted with the physics program that becomes available
at the ILC. The ILC, being an e+e≠ collider, inherits traditional virtues of past e+e≠ colliders such
as LEP and SLC. We have described these in Chapter 1. The ILC o�ers well defined initial states,
a clean environment, and reasonable signal-to-noise ratios even before any selection cuts. Thanks
to the clean environment, it can be equipped with very high precision detectors. The experimental
technique of Particle Flow Analysis (PFA), described in Volume 4 of this report, o�ers a qualitative
improvement in calorimetry over the detectors of the LEP era and su�cient jet mass resolution
to identify W and Z bosons in their hadronic decay modes. Thus, at the ILC, we can e�ectively
reconstruct events in terms of fundamental particles — quarks, leptons, and gauge bosons. Essentially,
we will be able to analyze events as viewing Feynman diagrams. By controlling beam polarization, we
can even select the Feynman diagrams that participate a particular reaction under study. The Higgs
boson can be observed in all important modes, including those with decay to hadronic jets. This is a
great advantage over the experiments at the LHC and provides the opportunity to carry out a truly
complete set of precision measurements of the properties of the Standard-Model-like Higgs boson
candidate found at the LHC.

The precision Higgs program will start at
Ô

s = 250 GeV with the Higgs-strahlung process,
e+e≠ æ Zh (Fig. 2.6 (left)).The production cross section for this process is plotted in Fig. 2.7 as a
function of

Ô
s together with that for the weak boson fusion processes (Figs. 2.6-(center and right)).

We can see that the Higgs-strahlung process attains its maximum at around
Ô

s = 250 GeV and
dominates the fusion processes there. The cross section for the fusion processes increases with the
energy and takes over that of the Higgs-strahlung process above

Ô
s >≥ 400 GeV.

The production cross section of the Higgs-strahlung process at
Ô

s ƒ 250 GeV is substantial
for the low mass Standard-Model-like Higgs boson. Its discovery would require only a few fb≠1 of
integrated luminosity. With 250 fb≠1, about 8. ◊ 104 Higgs boson events can be collected. Note that,
here and in the rest of our discussion, we take advantage of the ILC’s positron polarization to increase
the Higgs production rate over that expected for unpolarized beams.

The precise determination of the properties of the Higgs boson is one of the main goals of the
ILC. Only after this study is completed can we settle the question of whether the new resonance is

28 ILC Technical Design Report: Volume 2



MC

Calorimetry for the ILC Felix Sefkow     DESY, May 9, 2014 

Scint AHCAL calibration and 
electromagnetic performance

• SiPM gain monitoring: self-calibrating 
• Cell equalization: MIPs  
• Temperature correction:  ~4%/K 
• Validation of calibration and simulation 

with electrons

41
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How to calibrate the AHCAL

Simple calibration procedure per cell:

MIP constants

Saturation behaviour

Gain (for saturation and temperature 
correction) and intercalibration

Global calibration to electromagnetic 
scale, e/pi ratio for hadronic scale

Required single cell precision for hadronic 
calorimeter is moderate, collective effects 
easy to control

 → Go beyond this to fully understand all 
 aspects of SiPM operation

 → Provide excellent performance for 
 electromagnetic showers

Signal[ADC]

MPV

Published	  in	  JINST	  6,	  P04003	  (2011)
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Figure 5: Distribution of the MIP relative slopes per W-AHCAL layer, before and after temperature correc-
tion. The average relative slope is -4.3%/K before the correction, and -0.2% after.

• The linear fit was performed with the new y-axis, and the relative slopes, expressed in per-98

cents of MIPs, were obtained.99

The distributions of the relative slopes before and after temperature correction are shown in100

Fig. 5. One can see that after temperature correction the response is equalized at the level of101

0.2%/K.102

4. Simulation103

This section describes the test beam geometry as implemented in the GEANT4 [14] based appli-104

cation called Mokka [15], and presents the simulation models that are going to be compared with105

data.106

4.1 Mokka implementation107

A schematic representation of the test beam detectors, as simulated with Mokka, is given in Fig. 6.108

z=0
WCh1

−18 mm
−33 mm

Sc1

−142 mm

WCh2

−411 mm
−426 mm

−659 mm
−674 mm

WCh3

−722 mm

Sc2
W−HCAL

308 mm

z

Figure 6: Schematic representation of the CERN 2010 test beam line as implemented in the Mokka model
TBCern2010 (not to scale), where Sc stands for scintillator and WCh for wire chamber.

109

It includes three wire chambers, of 110⇥ 110⇥ 56 mm3, each with two sections measuring110

the x and the y position. Based on information from the wire chambers, the track of the incoming111

– 6 –

%/K
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PFLOW under CLIC conditions

• Overlay γγ events from 60 BX (every 0.5 ns) 
• take sub-detector specific integration times, multi-hit 

capability and time-stamping accuracy into account 
• apply pt and timing cuts on cluster level (sub-ns accuracy)

42

Z @ 1 TeV + 1.4 TeV BG (reconstructed particles)
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Z @ 1 TeV
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Shower simulation in Geant 4

• Low energy: cascade models 
• High energy: partonic models

43

minimize use of  
phenomenological  
parameterization 

“production”

“legacy”

“systematics”

“experimental”

“linear combin.”



2

HV : 7.4 kV

The homogeneity of the detector and its readout electronics were studied 

Power-Pulsing mode was tested in a magnetic field of 3 Tesla

Beam spot position Efficiency Multiplicity

The Power-Pulsing mode was 
 applied on a GRPC in a 3 Tesla 
 field at H2-CERN  
(2ms every 10ms) 
 No effect on the detector 
 performance 
 



Containment – use of Tail Catcher

5ECFA detector R&D Panel Analysis Results 

v Tail catcher gives us information 
about tails of hadronic showers. 

v Use ECAL+HCAL+TCMT to emulate 
the effect of coil by omitting layers 
in software, assuming shower after 
coil can be sampled.   

v Significant improvement in 
resolution, especially at higher 
energies.

arxiv:1201.1653 (accepted by JIN
S
T)

2012_JINST_7_P04015

http://arxiv.org/abs/1201.1653


Common developments  
!

Front end electronics 
!

!
not reported here: test beam infrastructure, 

DAQ, software and computing

46



April 2012 CALICE FE Electronics 1

ILC Challenges for electronics

• Requirements for electronics 
– Large dynamic range (15 bits) 
– Auto-trigger on ½ MIP  
– On chip zero suppress 
– Front-end embedded in detector 
– 108 channels 

– Ultra-low power : (25µW/ch) 
– Compactness 

• « Tracker electronics with calorimetric 
performance »

it’s gonna heat ! 
=>Power pulse



CALICE FE Electronics 2

ASICs for ILC prototypes

SPIROC2 
Analog HCAL (AHCAL) 
(SiPM) 
36 ch. 32mm² 
June 07, June 08, March 10

HARDROC2 and MICROROC 
Digital HCAL (DHCAL) 
(RPC, µmegas or GEMs) 
64 ch. 16mm² 
Sept 06, June 08, March 10

SKIROC2 
ECAL 
(Si PIN diode) 
64 ch. 70mm² 
March 10

q 1st  generation ASICs: FLC-PHY3 and 
FLC_SiPM (2003) for physics prototypes 
!

q 2nd generation ASICs: ROC chips for 
technological prototypes 
ü Address integration issues  
ü Auto-trigger, analog storage, 

internal digitization and token-ring 
readout  

ü Include power pulsing : <1 % duty 
cycle 

ü Optimize commonalities within 
CALICE  (readout, DAQ…) 
!

q 3rd generation ASICs (AIDA funded): 
ü Independent channels to perform Zero 

suppress

April 2012
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Gaseous HCAL

• Analysis: huge potential 
– modelling response for low and high density 
– optimise energy measurement, weighting 

• RPC DHCAL, sDHCAL:  
– Large area (2m2) chambers 
– HV and gas distribution 
– overcome rate limitations 

• 1-glass chambers 
• semi-conductive glass 
• bakelite 

– electronics and DAQ 
• Micromegas:  

– resistive detectors; limit discharges 
• reduce active components 

– single mesh large size chambers 
• GEMs, TGEMs: 

– large areas 
– optimise chambers 
– integrate uM ASIC

49

THGEM / MICROROC 
• Based on work of many LAPP & Omega people
• Successful preliminary tests of several THGEM-based detectors 

coupled to the MICROROC chip 
• Standard, WELL, SRWELL 

• 100 x 100 mm2 THGEM electrodes were mounted inside LAPP’s 
320x480 mm2 chamber

21

Standard THGEM placed on a supporting device 
WELL & SRWELL attached to 
the MICROROC anode

Shikma Bressler, Weizmann Institute of Science                                                                                     CALICE collaboration meeting, March. 21st 2013

Thursday, March 21, 13


