Running Scenarios from the Higgs Perspective

ILC @ DESY General Project Meeting May 9, 2014 J.List

Higgs Production at the ILC (in a nutshell)

Higgs Decay at the ILC (in a nutshell)

- Measuring Higgs couplings to fermions requires
 - High statistics on $\sigma x BR$
 - Model-independent cross-section normalisation

J.List

The special case: $y_t = g_{Htt}$

- Nick two weeks ago: 10⁻¹ 500 550 Tunnel length to be fixed √s / Ge to ±300m by end of year => top priority question!
- large impact on ttH, eg 500 GeV \rightarrow 550 GeV:
- σ_{ttH} increases by 3.7, while background decreases
- Coupling precision becomes better by factor ~2.4

Example Running Scenarios

- a) 250 fb⁻¹ @ 250 GeV, 500 fb⁻¹ @ 500 GeV a*) 350 fb⁻¹ @ 350 GeV, 500 fb⁻¹ @ 500 GeV
- b) 250 fb⁻¹ @ 250 GeV, 500 fb⁻¹ @ 550 GeV
- c) 250 fb⁻¹ @ 250 GeV, 1000 fb⁻¹ @ 500 GeV
- d) 100 fb⁻¹ @ 250 GeV, 200 fb⁻¹ @ 350 GeV, 500 fb⁻¹ @ 500 GeV
- e) 100 fb⁻¹ @ 250 GeV, 200 fb⁻¹ @ 350 GeV, 500 fb⁻¹ @ 550 GeV
- f) 25 fb⁻¹ @ 250 GeV, 350 fb⁻¹ @ 350 GeV, 500 fb⁻¹ @ 500 GeV
- g) 500 fb⁻¹ @ 250 GeV, 500 fb⁻¹ @ 500 GeV
- h) 50 fb⁻¹ @ 250 GeV, 200 fb⁻¹ @ 350 GeV, 500 fb⁻¹ @ 500 GeV, *then* 1000 fb⁻¹ @ 250 GeV
- i) 50 fb⁻¹ @ 250 GeV, 200 fb⁻¹ @ 350 GeV, 500 fb⁻¹ @ 550GeV, *then* 1000 fb⁻¹ @ 250 GeV

First attempt to assess their potential

- Currently based on extrapolations at many places, in particular at 350 GeV
- All plots by Junping Tian
- More details on method: cf Junping's recent presentation in ILD Analysis meeting
- "1 year" = 10⁷s operation at peak luminosity, no rampup, commissioning, shut-downs, …
- Will be updated for AWLC with to include these

HZZ: It's all at 250 (350?) GeV

HWW: initially needs fusion \geq 350 GeV

Hbb: needs \geq 350 GeV and 250 GeV

Total Width Γ_{H}

Htt: starts at \geq 500 GeV

Conclusions?

None yet: need eg solid studies at 350 GeV

Qualitative Observations

- g_{HZZ} wants maximal dataset at 250 (350?) GeV
- All other couplings are initially limited by statistics
 > WW-fusion important
 (thus: polarisation important!)
 => have better initial precision at ≥ 350 GeV
- Until at some point they become limited by knowledge of g_{HZZ}
 => then profit from (more) 250 GeV data
- Ultimatively, ≥1 ab⁻¹ @ 250 GeV useful
- g_{ttH} profits from energy increase beyond 500 GeV