HIGGS SELF-COUPLING ANALYSIS WITH $H \rightarrow WW^*$

Masakazu Kurata 04/11/2014

STATUS

- Start to use dE/dx and shower profile
 - Using new variables to Lepton ID
 - Precise study of fake tracks(Hadrons)

• Generate DST files for the analysis

- Target: AWLC14
- Study @500GeV

STUDY OF FAKE LEPTONS

FAKE TRACK STUDY

- Fraction of particle types regarded as fakes
- Electron fakes
 - Loose selection: $\frac{ECAL}{ECAL+HCAL} > 0.5 \&\& \frac{E}{P} > 0.5$

Туре	п	Κ	р
Fraction(%)	60.6 ± 1.1	3.0 ± 0.2	36.4 ± 0.9

• Muon fakes

• Loose selection: $\frac{ECAL}{ECAL+HCAL} < 0.5 \&\& \frac{E}{P} < 0.5$

Туре	п	Κ	р
Fraction(%)	43.8 ± 2.1	$0.6 {\pm} 0.2$	55.5 ± 2.3

- Characterized with showerMax and xl20
- Low energy tracks E<20GeV
- showerMax is scaled using Exp. shower max
- o Each particle type (π,K,p)
- No clear difference...

- Characterized with showerMax and xl20
- middle energy tracks 20GeV<E<40GeV
- showerMax is scaled using Exp. shower max
- o Each particle type (π,K,p)
- No clear difference...

- Characterized with showerMax and xl20
- showerMax is scaled using Exp. shower max
- Pion with different energy range
- No clear difference...

E<20GeV 20GeV<E<40GeV 40GeV<E

Characterized with showerMax and xl20
showerMax is scaled using Exp. shower max
Proton with different energy range
No clear difference...

E<20GeV 20GeV<E<40GeV 40GeV<E

TRANSVERSE INFORMATION

- Characterized with absorption length
- Low energy tracks E<20GeV
- Each particle type (π,K,p)
- No clear difference...

TRANSVERSE INFORMATION

- Characterized with absorption length
- middle energy tracks 20GeV<E<40GeV
- Each particle type (п,К,р)
- No clear difference...

TRANSVERSE INFORMATION

- Characterized with absorption length
- Pion with different energy range
- No clear difference...(difference is slight? Due to track curvature?)

TRANSVERSE INFORMATION

- Characterized with absorption length
- Proton with different energy range
- Slight difference...(due to track curvature?)

X2 as a result of fitting

Low energy tracks E<20GeV
Each particle type (π,K,p)
No clear difference...

13

X2 as a result of fitting

middle energy tracks 20GeV<E<40GeV Each particle type (π,K,p) No clear difference...

X2 as a result of fitting

- Pion with different energy range
- The difference is coming from track curvature?

TRANSVERSE INFORMATION

Proton with different energy range Difference is coming from track curvature?

PRELIMINARY LEPTON ID

17

PRELIMINARY RESULT OF LEPTON ID

- So far, all the hadron tracks are regarded as same fakes
 - No clear difference found between each particle type
- Using likelihood method
 - $L = \frac{\prod s}{\prod s + \prod b}$
- Target is the leptons coming from HH \rightarrow WW* \rightarrow lvjj
 - Low momentum leptons
 - Electron type
 - 24.7% improvement

• Need to optimize

Method	Cut based	w/o shower	w shower	w dE/dx	
signal	98.1	98.1	98.0	98.3	
HH→(bb)(bb)	-	1.78	1.35	1.35	18

NEXT STEP

- Using dE/dx and shower profile more
 - Low momentum track energy correction
 - Assign particle type to the tracks Bayesian approach?
 - Start to check for b-tagging
 - First step, check the tracks which create b(or c) vertex

- It is necessary to show the significance and advantage of using dE/dx
 - It is very important!

Todo

• More study of fake lepton sample

- Components of fake lepton candidates
 o Pion? Kaon? Proton? fraction
- Is there any difference between fake lepton components?
 Overall distribution doesn't have any difference...

• Apply to lepton ID

- Performance check
- Study for muon type
 - Any difference between muon and (I guess) punch-through pion?

• Integrating Ecal/Hcal - good estimation in Hcal

- Very difficult!!
- Fit function gives up fitting...