Higgs Self-Coupling Measurement at the ILC.

${\sf Claude}{\sf -}{\sf Fabienne}\ {\sf D}{{\sf \ddot{u}}{\sf rig}^1},\ {\sf Junping}\ {\sf Tian}^2, {\sf Jenny}\ {\sf List}^1,\ {\sf Keisuke}\ {\sf Fujii}^2$

 1 DESY Hamburg, Germany 2 KEK, Japan

ILD Optimisation meeting, April 16th 2014

- > perform analysis for 125 GeV with and without overlay
- > leptonic channel and neutrino channel presented in January
- > today: give short overview of hadronic channel and preliminary results
- > analysis strategy identical to Junping Tians LC-REP-2013-003
- complete analysis will be presented at AWLC2014 at FermiLab

- 1 reject events with isolated leptons
- **2** remove low- $p_T \gamma \gamma \rightarrow$ hadrons background
- 3 force the other reconstructed particles into six jets (Durham algorithm)
- ${f 0}$ combine the six jets by choosing combination with smallest χ^2

$$\chi^{2} = \frac{\left(M(j_{i}j_{j}) - M(H)\right)^{2}}{\sigma_{H}^{2}} + \frac{\left(M(j_{k}j_{l}) - M(H)\right)^{2}}{\sigma_{H}^{2}} + \frac{\left(M(j_{m}j_{n}) - M(Z)\right)^{2}}{\sigma_{Z}^{2}}$$

- \bigcirc require 3rd largest b-likeliness of 4 jets from the 2 Higgs to be bmax3 > 0.16
- neural net analysis performed separately for signal and each background, output classifiers are used to suppress background

in final selection, separate all events into two categories according to the flavor tagging of the two jets from the Z boson

bbHH dominant and light qqHH dominant.

 \longrightarrow achieve separation with the sum of b-likeliness of the two jets from Z decay

Figure : The b-likeliness of the two Z-bosons using samples with overlay.

Optimised cuts - dominant bbHH

optimise with overlay

- > cut1: prop31 + prob32 > 0.54
- cut2:
 - $\begin{array}{l} P_{\rm t}^{\rm miss} < 77 \; {\rm GeV}, \\ {\rm npfos} > 245, \\ 37 \; {\rm GeV} < {\sf M}({\sf Z}) < 136 \; {\rm GeV}, \\ 83 \; {\rm GeV} < {\sf M}({\sf H1}) < 159 \; {\rm GeV}, \\ 62 \; {\rm GeV} < {\sf M}({\sf H1}) < 162 \; {\rm GeV} \end{array}$
- ➤ cut3: MVAbbbb > 0.83
- > cut4: MVAbbqqqq > 0.51
- > cut5: MVAqqbbbb > 0.16
- ▶ cut6: bmax3 + bmax4 > 1.21

optimise without overlay

> cut1: prop31 + prob32 > 0.54

> cut2:

- $\begin{array}{l} P_{\rm t}^{\rm miss} < 80 \; {\rm GeV}, \\ {\rm npfos} > 246, \\ 34 \; {\rm GeV} < {\sf M}({\sf Z}) < 136 \; {\rm GeV}, \\ 81 \; {\rm GeV} < {\sf M}({\sf H1}) < 170 \; {\rm GeV}, \\ 73 \; {\rm GeV} < {\sf M}({\sf H1}) < 167 \; {\rm GeV} \end{array}$
- > cut3: MVAbbbb > 0.71
- > cut4: MVAbbqqqq > 0.48
- > cut5: MVAqqbbbb > 0.14
- ➤ cut6: bmax3 + bmax4 > 1.22

light grey: without overlay white: with overlay

	bbbb	lvbbqq	bbuddu	bbcsdu	bbcssc	qqbbbb	qqqqh	ttz	ttg	bgrd	signal (6b)
expected	40234.3	740098	156144	312013	155904	140.5	662.6	2197.2	2109.5	$1.4\cdot 10^6$	273.13
preselection	23233.7	16136.2	570.0	6167.0	12588.5	83.6	114.7	166.4	428.9	59488.9	81.6 (59.7)
	23589.4	18813.7	952.9	8143.2	14255.2	83.5	116.2	175.1	434.6	66563.9	81.8 (59.4)
cut1	2294.9	318.2	11.4	90.4	261.4	14.2	15.4	16.9	45.3	3068.3	19.1 (16.1)
	2681.6	496.0	20.0	165.7	376.6	14.8	16.3	17.9	48.8	3837.9	19.6 (16.4)
cut2	673.8	109.0	11.3	82.2	246.1	12.9	14.5	14.8	31.9	1196.5	18.3 (15.6)
	796.2	185.7	18.2	148.9	341.6	12.9	14.9	15.1	33.0	1566.6	18.3 (15.7)
cut3	11.9	18.7	9.9	67.4	201.5	9.1	12.3	13.3	26.7	371.0	16.2 (14.3)
	11.5	21.2	12.7	109.0	242.8	7.4	10.9	12.7	24.8	453.1	14.9 (13.1)
cut4	10.0	14.8	7.3	48.6	130.9	8.1	11.4	12.7	24.8	268.7	15.6 (13.8)
	10.1	17.3	9.9	77.2	160.5	6.2	9.9	12.1	22.4	325.9	14.1 (12.4)
cut5	9.5	14.0	7.3	47.2	127.5	7.1	11.1	12.5	24.3	260.5	15.4 (13.7)
	9.6	17.0	9.7	74.5	157.1	5.6	9.7	12.2	22.3	317.8	13.9 (12.3)
cut6	3.8	0	0.7	0.7	3.0	3.2	5.0	2.3	2.7	21.3	9.1 (8.5)
	2.7	0	0.3	2.2	4.2	2.3	4.5	2.4	3.0	22.3	8.3 (7.8)

Optimised Cuts - dominant light qqHH

optimise with overlay

> cut1: prop31 + prob32 < 0.54

> cut2:

```
\begin{array}{l} P_t^{\text{miss}} < 77 \ \mathrm{GeV}, \\ \text{npfos} > 245, \\ 65 \ \mathrm{GeV} < \mathsf{M}(\mathsf{Z}) < 133 \ \mathrm{GeV}, \\ 100 \ \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 136 \ \mathrm{GeV}, \\ 96 \ \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 141 \ \mathrm{GeV} \end{array}
```

- ▶ cut3: MVAbbbb > 0.73
- > cut4: MVAbbqqqq > 0.52
- > cut5: MVAqqbbbb > 0.11

> cut6:

```
\begin{array}{l} \mathsf{bmax3} > 0.92 \mathsf{,} \\ \mathsf{bmax3} + \mathsf{bmax4} > 1.37 \end{array}
```

optimise without overlay

> cut1: prop31 + prob32 < 0.54

> cut2:

 $\begin{array}{l} P_{t}^{\text{miss}} < 80 \; \mathrm{GeV}, \\ \text{npfos} > 246, \\ 64 \; \mathrm{GeV} < \mathsf{M}(\mathsf{Z}) < 129 \; \mathrm{GeV}, \\ 104 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 134 \; \mathrm{GeV}, \\ 98 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 140 \; \mathrm{GeV} \end{array}$

- > cut3: MVAbbbb > 0.59
- > cut4: MVAbbqqqq > 0.43
- > cut5: MVAqqbbbb > 0.15
- **> cut6**:

bmax3 > 0.91, bmax3 + bmax4 > 1.38

light grey: without overlay white: with overlay

	bbbb	lvbbqq	bbuddu	bbcsdu	bbcssc	qqbbbb	qqqqh	ttz	ttg	bgrd	signal (6b)
expected	40234.3	740098	156144	312013	155904	140.5	662.6	2197.2	2109.5	$1.41\cdot 10^6$	273.13
preselection	23233.7	16136.2	570.0	6167.0	12588.5	83.6	114.7	166.4	428.9	59488.9	81.6 (59.7)
	23589.4	18813.7	952.9	8143.2	14255.2	83.5	116.2	175.1	434.6	66563.9	81.8 (59.4)
cut1 (probZ)	20938.8	15818.0	558.6	6076.6	12327.1	69.3	99.2	149.5	383.6	56420.7	62.5 (43.6)
	20907.8	18317.7	932.9	7977.5	13878.5	68.7	99.9	157.2	385.8	62726.0	62.1 (43.0)
cut2 (m,pfos,pt)	158.6	212.7	65.5	800.0	1552.1	5.2	13.3	21.8	41.5	2870.9	20.7 (17.7)
	196.2	338.7	141.1	1263.7	2132.6	6.8	17.2	27.2	49.6	4173.1	21.9 (18.4)
cut3 (mlp1)	12.3	81.8	62.4	741.1	1431.1	4.6	12.4	21.5	40.1	2407.3	19.5 (16.8)
	13.9	134.0	128.8	1116.5	1866.8	5.6	15.1	26.5	47.4	3354.6	19.8 (16.7)
cut4 (mlp2)	11.8	65.5	51.6	549.8	989.3	4.5	12.2	21.1	38.9	1744.8	19.2 (16.6)
	11.9	109.6	82.1	666.7	1034.3	5.1	14.1	25.2	42.7	1991.9	19.0 (16.1)
cut5 (mlp3)	11.3	64.7	50.3	541.7	973.4	4.1	12.1	21.1	38.7	1717.4	19.1 (16.5)
	11.8	109.6	81.2	661.7	1028.9	4.9	14.0	25.2	42.6	1979.9	18.9 (16.0)
cut6 (bmax3)	4.6	0.3	2.9	5.2	4.9	1.7	4.6	4.3	6.0	34.7	9.0 (8.2)
	5.6	0.5	2.4	6.2	5.1	2.0	5.8	5.0	6.6	39.3	8.7 (7.9)

Preliminary results of analysis for 125 GeV

 \blacktriangleright results extrapolated to m_H= 125 GeV give a precision of 53% on the Higgs self-coupling

preliminary results for m_H = 125 GeV without overlay

	modes	signal	background	d sig	gnificance				
				excess	measurement				
	$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ				
		3.3	6.0	1.12σ	0.91σ				
	${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.4	7.0	1.72σ	1.45σ				
	m ZHH ightarrow q ar q HH	9.1	21.3	1.78σ	1.61σ				
		9.0	34.7	1.41σ	1.30σ				
cross-section: $\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 32\%$			H	Higgs self-c	coupling: $\frac{\delta\lambda}{\lambda} =$	52%			

We achieve a precision of 52% on the Higgs self-coupling for $m_{\rm H}=125~{\rm GeV}$ Effect of $\gamma\gamma\text{-overlay}$?

Preliminary results for $m_H = 125 \text{ GeV}$ with overlay

preliminary results for $m_{\text{H}}{=}$ 125 GeV without overlay:

modes	signal	background	sig	gnificance
			excess	measurement
$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ
	3.3	6.0	1.12σ	0.91σ
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.4	7.0	1.72σ	1.45σ
m ZHH ightarrow q ar q HH	9.1	21.3	1.78σ	1.61σ
	9.0	34.7	1.41σ	1.30σ

We achieve a combined signal significance of $s\sigma=3.8\sigma$

preliminary results for $m_{\text{H}}{=}~125~\text{GeV}$ with overlay:

modes	signal	background	sig	gnificance
			excess	measurement
$ZHH \rightarrow I^{-}I^{+}HH$	2.4	4.0	0.94σ	0.72σ
	3.2	7.0	1.01σ	0.83σ
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	3.8	4.0	1.53σ	1.22σ
m ZHH ightarrow q ar q HH	8.3	22.3	1.59σ	1.44σ
	8.7	39.3	1.29σ	1.19σ

Considering overlay, we achieve a combined signal significance of $s\sigma=2.9\sigma$

Preliminary results of analysis for 125 GeV

 \blacktriangleright results without overlay for m_H= 125 GeV give a precision of 52% on the Higgs self-coupling

preliminary results for m_H = 125 GeV with overlay

cross-section:	$rac{\delta \sigma_{ m ZHH}}{\sigma_{ m ZHH}}$	= 36.2%
----------------	---	---------

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 59.4\%$

Considering $\gamma\gamma$ -overlay, we achieve a precision of 59% on the Higgs self-coupling

Next step: optimise analysis strategy

