Implementation of Covariance Matrix on ReconstructedParticle

C. Calancha

ILD Analysis \& Software Meeting

April 16, 2014

Motivation

- ReconstructedParticle.getCovMatrix is not implemented in current ILCSOFT release (return $0, \forall p \in$ PandoraPFOs).
- This method provide covariance matrix of the reco. particle 4 vector \{px,py,pz,E\}.
- I was suggested to apply this cov. matrix to obtain dimuon mass error event-by-event basis.
- I have written Marlin processor adding new LCCollection to the event.
- This collection is a copy of PandoraPFOs but with filled cov. matrix.
- Code is available here: http://www-jlc.kek.jp/jlc/en/node/209

Calculation

$\Sigma_{i}=\Sigma_{i}(\tan \lambda, \phi, \Omega), \Sigma_{i}^{\prime}=\Sigma_{i}^{\prime}(p x, p y, p z, E)$

- Covariance matrix on helix parameters, Σ_{i}, from associated track.
- Obtain jacobian (\mathfrak{J}) and perform: $\Sigma_{i}^{\prime}=\mathfrak{J}^{T} \Sigma_{i} \mathfrak{J}$

Dimuon invariant mass error

- Checked calculation with muons from $\mathrm{H} \rightarrow \mu \mu$.
- The covariance matrix is used to obtain the dimuon invariant mass event-by-event.

- Better precision at central region (tracks have more hits).

- No dependence on azimutal angle.

Gaussian Fit in [-2,2]

Gaussian fit [-2,2]:

- mean: -0.157
- sigma: 1.0001

Summary / Plan

Summary

- Current ILCSOFT does not provide covariance matrix on $\{p x, p y, p z, E\}$ for the reco. particles.
- Developed Marlin processor calculating this matrix for charged particles.

Plan

- Use cov. matrix in update of $\mathrm{H} \rightarrow \mu \mu$ analysis.

BACKUP

BACK UP

Relation between variables

- Original base: $\mathfrak{A}=\left\{\tan \lambda, \Omega, \phi, \mathrm{d}_{0}, \mathrm{z}_{0}\right\}$
- New base: $\mathfrak{B}=\left\{p_{x}, p_{y}, p_{z}, E\right\}$

$$
\begin{array}{r}
\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{T}} \cos \phi \\
\mathrm{p}_{\mathrm{y}}=\mathrm{p}_{\mathrm{T}} \sin \phi \\
\mathrm{p}_{\mathrm{z}}=\mathrm{p}_{\mathrm{T}} \tan \lambda \\
E^{2}=\left(a \frac{B_{z}}{\Omega \cos \lambda}\right)^{2}+m^{2} \\
=\left(\frac{\mathrm{p}_{\mathrm{T}}}{\cos \lambda}\right)^{2}+m^{2}
\end{array}
$$

Momenta does not depend on $\mathrm{d}_{0}, \mathrm{z}_{0}$

- $\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{x}}(\tan \lambda, \Omega, \phi)$
- $\mathrm{p}_{\mathrm{y}}=\mathrm{p}_{\mathrm{y}}(\tan \lambda, \Omega, \phi)$
- $\mathrm{p}_{\mathrm{z}}=\mathrm{p}_{\mathrm{z}}(\tan \lambda, \Omega)$

Change of cov. matrix

(1) $\Sigma_{i}^{\prime}=\mathfrak{J}^{T} \Sigma_{i} \mathfrak{J}$
(2) Σ_{i} cov. matrix in \mathfrak{A}.
(3) Σ_{i}^{\prime} cov. matrix in \mathfrak{B}.

Jacobian helix parameters to momenta space

- After some derivative exercises ...
$\mathfrak{J}=\left[\begin{array}{cccc}\frac{\partial P_{x}}{\partial \tan \lambda} & \frac{\partial P_{y}}{\partial \tan \lambda} & \frac{\partial P_{z}}{\partial \tan \lambda} & \frac{\partial E}{\partial \tan \lambda} \\ \frac{\partial P_{x}}{\partial \Omega} & \frac{\partial P_{y}}{\partial \Omega} & \frac{\partial P_{z}}{\partial \Omega} & \frac{\partial E}{\partial \Omega} \\ \frac{\partial P_{x}}{\partial d_{0}} & \frac{\partial P_{y}}{\partial d_{0}} & \frac{\partial P_{z}}{\partial d_{0}} & \frac{\partial E}{\partial d_{0}} \\ \frac{\partial P_{x}}{\partial z_{0}} & \frac{\partial P_{y}}{\partial z_{0}} & \frac{\partial P_{z}}{\partial z_{0}} & \frac{\partial E}{\partial z_{0}} \\ \frac{\partial P_{x}}{\partial \phi} & \frac{\partial P_{y}}{\partial \phi} & \frac{\partial P_{z}}{\partial \phi} & \frac{\partial E}{\partial \phi}\end{array}\right]=\frac{-1}{\Omega}\left[\begin{array}{cccc}0 & 0 & -\Omega P_{T} & -\frac{P_{z}^{2} \Omega}{E \tan \lambda} \\ P_{x} & P_{y} & P_{z} & \frac{P^{2}}{E} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ P_{y} \Omega & -P_{x} \Omega & 0 & 0\end{array}\right]$
$\longrightarrow \Sigma_{i}^{\prime}=\mathfrak{J}^{\top} \Sigma_{i} \mathfrak{J}$, covariance matrix in momenta space.
($\Sigma_{i}^{\prime}=\mathfrak{J} \Sigma_{i} \mathfrak{J}^{\top}$ if you define jacobian as the transposed of quoted above)

