$h \rightarrow \tau^+ \tau^-$ BR study

Shin-ichi Kawada Hiroshima University

Separation of Zh & WW-fusion

• First look: I checked the MC invariant mass of $M_{\nu\nu}$ after applying cuts.

Separation: making categories

all

I defined... Zh-like: $M_{\nu\nu} = 81.2 - 101.2$ fusion-like: other region

Then I checked the reconstructed particle in both category.

Separation: some variables

 τ^+ energy + τ^- energy

angle between (τ^+ 3-momentum + τ^- 3-momentum) vector and beam axis

Separation

- $\cos \theta_{\tau^+ \tau^-}$ looks good variable for separation.
- Next step: try to fit $\cos \theta_{\tau^+ \tau^-}$ with (bkg) + (Zh-like) + (fusion-like)

250 GeV analysis

- Practice analysis just started.
 - All TDR samples were used: 2f, 4f, 1f_3f, aa_2f, higgs_ffh
 - Tau polarization is not included properly in TDR samples. It should be replaced to new samples which used in Yokoyama-san's CP study.
- I analyzed qqh process because of high statistics.

Reconstruction

- Beam-induced background is small in 250 GeV, I didn't apply the kT clustering.
- 1. Applying tau finder for qqh to reconstruct tau
- 2. Applying collinear approximation to reconstruct Higgs mass
- 3. Applying Durham 2-jet clustering to reconstruct Z boson

Cut-based analysis

Cut 0: # of q jets = 2, # of $\tau^+(\tau^-) = 1$, # of tracks >= 9, $M_{col} > 0$, $E_{col} > 0$ Cut 1: thrust < 0.96 Cut 2: $|\cos \theta_{\rm miss}| < 0.96$ $\overline{\text{Cut 3: } M_Z(M_{aa})} > 80$ Cut 4: 95 < $E_Z(E_{aa})$ < 125 Cut 5: $M_{\tau\tau} < 110$ Cut 6: $E_{\tau\tau} < 125$ Cut 7: $\cos \theta_{\tau \tau} < -0.55$ Cut 8: $100 < M_{col} < 190$ Cut 9: $E_{col} < 210$ Cut 10: $M_{\rm recoil} > 117$

Cut table

	signal qqh $h \rightarrow \tau \tau$	qqh h → ττ	llh vvh	2f	4f	1f_3f	aa_2f	others	signi.
Cut 0	1234,625	458,666	3135,347	4.444e+04	2,067e+05	4,382e+04	1,528e+05	Q	1.84
	1234,324	458,666	3135,321	3,737e+04	2,019e+05	3,875e+04	1,505e+05	0	1,88
•••	1190,960	414,712	2827,822	1,116e+04	1,737e+05	1828,858	2,479e+04	0	2,56
	$1069_{+}250$	389,695	2711,341	6329,353	6,326e+04	652,089	161,821	0	3,92
	1000.591	165.557	541,237	196,383	2.376e+04	105,484	0	0	6,23
	967.144	160,329	527,236	107.774	2,108e+04	98,127	0	0	6,38
	963,979	160,320	525,446	83,117	1.525e+04	91.376	0	0	7,38
	947.099	22,852	242,857	38,799	3295,347	13.051	0	0	14
	844,105	7.164	62,827	1.635	1020,556	1.800	0	0	19,2
	843.632	7.018	61,786	1.635	982,007	1.800	0	0	19.4
Cut 10	800,271	5,952	39,783	0.088	411,903	0,900	0	0	22,6

 $\frac{800.3}{\sqrt{800.3+458.6}} = 22.6\sigma$

Asian Physics & Software Meeting (2014/May/9)

TMVA analysis

- Applied pre cuts before TMVA
 - pre cuts : # of q jets = 2, # of $\tau^+(\tau^-)$ = 1, # of tracks >= 9, $M_{col} > 0$, $E_{col} > 0$
 - suppress trivial background: 90 < E_{vis} < 280, $P_t > 50$, thrust < 0.97, 40 < $E_Z(E_{qq})$ < 200, $E_{\tau\tau} < 160$
- 17 parameters were used
 - $\# \text{ of tracks} \cdot M_{\text{vis}} \cdot P_t \cdot \text{thrust} \cdot \cos \theta_{\text{miss}} \cdot M_{qq}(M_Z) \cdot E_{qq}(E_Z) \cdot \cos \theta_{qq} \cdot M_{\tau\tau} \cdot E_{\tau\tau} \cdot \cos \theta_{\tau\tau} \cdot \cos \theta_{\text{acop}} \cdot \log_{10} |d_0 \operatorname{sig}(\tau^+)| + \log_{10} |d_0 \operatorname{sig}(\tau^-)| \cdot \log_{10} |z_0 \operatorname{sig}(\tau^+)| + \log_{10} |z_0 \operatorname{sig}(\tau^-)| \cdot M_{\text{col}} \cdot E_{\text{col}} \cdot M_{\text{recoil}}$

TMVA results

BDTG output > 0.3387 N_{sig} = 905.826, N_{bkg} = 582.4139, sig = 23.4806

250 GeV super preliminary results qqh only

Lol study Mh = 120 GeV Cut-based (previous study)	Extrapolation to Mh = 125 GeV	TDR sample Mh = 125 GeV Cut-based	TDR sample Mh = 125 GeV TMVA
25.7	20.2	22.6	23.5

Better significance was obtained, even Xsec and $BR(h \rightarrow \tau \tau)$ are dropping from 120 GeV case. ---> better separation in Z and Higgs?

Next step: replace to new sample, and analyze