Higgs Recoil Mass Study at 350 GeV

Americas Workshop on Linear Colliders 2014 May 12-16, 2014 Fermilab, IL, USA

Jacqueline Yan, D. Jeans, T. Tanabe (Univ. of Tokyo) T. Suehara (Kyushu Univ.) Junping Tian (KEK) and the ILC Physics Working Group

520

recoil mass study using $e+e- \rightarrow ZH \rightarrow \mu+\mu-H$ Ec.m.s. = 350 GeV, L = 333 fb-1 And also Ec.m.s. = 250 GeV, L = 250 fb-1

<u>Goal:</u>

precise measurement of

Higgs cross section $\sigma_{\rm H}$

BG : included all 2f, 4f, 6f BG processes

Layout of this Talk

- Evaluation of data selection performance cross section error, efficiency, significance, S/N ratio, ect.....
- Compare alternative polarization scenarios
- Comparison with sqrt(s)=250 GeV

Summary & Plans

Data Selection Method and Fitting Method for Recoil Mass Plot

Muon Selection

reject neutrals

- Ptot > 5 GeV
- small E_cluster / P_total < 0.5
- Best track selection : $cos(track angle) < 0.98 \& |D0/\delta D0| < 5$

Best Z Candidate Selection

2 muon candidates with **opposite charge**

choose pair with invariant mass closest to Z mass

Final Selection for sqrt(s)= 350 GeV

- 84 GeV < M_inv < 98 GeV
- 10 GeV < pT_mumu < 140 GeV
- dptbal = |pT_mumu pTγ_max| > 10 GeV
- coplanarity < 3
- |cos(θ_Zpro)| < 0.91
 (Z production angle)
- 120 GeV < Mrecoil < 140 GeV

for sqrt(s)=250 GeV, no coplanrity cut

Data Selection Method

Experimented with various cut threshold to achieve highest sig eff and S/N raio

Definitions

- M_inv : invariant mass of 2 muons
- pT_mumu : pT of reconstructed muons
- pTγ_max : pT of most energetic photon
- $\theta_{Zpro} = Z \text{ production angle}$

Results after selection (sqrt(s)=350 GeV)

- Sig efficiency = 48.9 +/- 0.5%
- S/N = 0.40, significance = 17.2
- # of signals = 1092+/-55

after all cuts, dominant BG are: sqrt(s) = 350 GeV : #1) 4f_ZZ_sl

 $sqrt(s) = 250 \text{ GeV} : #1) 2f_Z_l$

#**2) 2f_Z_l** #2) 4f_ZZ_sl

#3) 4f_WW_sl, no ttbar BG left #3) 4f_ZZWWMix_l

fitting for recoil mass histogram

1st time fitting:

•fit only signal : float all 5 GPET pars

• fit BG only 3rd order polynomial

SIGNAL: GPET: 5 parameters :
 Gaus (left-side), Gaus + expo (right side)

$$\frac{N}{\sqrt{\rho_{S}}} \exp \left[\stackrel{\stackrel{\stackrel{\stackrel{}}{}}{}_{i}}{-\frac{1}{2}} \frac{a}{b} \frac{x - x_{mean}}{s} \stackrel{\stackrel{\stackrel{}}{\overset{}}{\overset{}}_{j}}{\overset{\stackrel{}}{b}} \right] \qquad \stackrel{\stackrel{\stackrel{}}{\underset{i}}{\overset{}}_{i}}{\overset{\stackrel{}}{\underset{i}}{\overset{}}_{j}} = \frac{1}{2} \frac{a}{b} \frac{x - x_{mean}}{s} \stackrel{\stackrel{\stackrel{}}{\underset{i}}{\overset{}}_{j}}{\overset{}}_{j} = \frac{a}{s} \frac{a}{s} \stackrel{\stackrel{}}{\underset{i}}{\overset{}}_{j} = \frac{a}{s} \frac{a}{s} \frac{x - x_{mean}}{s} \stackrel{\stackrel{}}{\underset{i}}{\overset{}}_{j} = \frac{a}{s} \frac{a}{s} \frac{a}{s} \frac{x - x_{mean}}{s} \stackrel{\stackrel{}}{\underset{i}}{\overset{}}_{j} = \frac{a}{s} \frac{a}{s}$$

Final fitting:

float only height and mean,

Fix BG function and remaining GPET pars from 1st time fitting

Toy MC Studies to evaluate quality of fitting and precision for cross section and No. of signals

•test validity of fitting : Pull plot for xsec = [(fitted xsec)-("real" xsec)]/ (xsec fitting error)
•Evaluated precision of xsec and number of signals (Nsig)

Method:

- •Generate MC according to fitted function (GPET + BG) for real sample
- •Input #of events according to Poisson distr (mean = real # of input)
- •Fit MC histogram with same function
- Integrate under GPET to get Nsig \rightarrow calculate xsec

Results:

Pull plot seems reasonable

Nsig and xsec consistent with "real values from sample" within rms error ranges

example of results on next page

Result of Toy MC 10000 seeds sqrt(s)=350 GeV

• "real xsec = 6.688", " real Nsig = 1088" Consistent within error ranges

Compare Results between Alternative Polarization Scenarios (-0.8, +0.3) vs (+0.8, -0.3)

sqrt(s) = 350 GeV L = 333 fb-1

results for sqrt(s) =350 GeV , L = 333 fb-1

evaluated using Toy MC generated from these fitted function shapes

350 GeV	ε	Δ σ/σ	xsec	Nsig	S/N	significance
(-0.8,+0.3)	48.9+/-0.5%	64.9+/-0.2%	6.71+/-0.34	1092+/-55	0.4	17.7
(+0.8,-0.3)	47.8+/-0.5%	6 5.0+/-0.2%	4.53+/-0.26	720+/-41	0.75	17.8

Compare with results for sqrt(s) = 250 GeV L = 250 fb-1

Also compare alternative polarization scenarios

<u>results for sqrt(s) = 250 GeV , L = 250 fb - 1</u>

evaluated using Toy MC generated from these fitted function shapes

250 GeV	ε	Δ <i>σ</i> /σ	xsec	Nsig	S/N	significance
(-0.8,+0.3)	66.4+/-0.59	% 3.6+∕−0.1%	10.52+/-0.38	1747+/-64	0.37	21.7
(+0.8,-0.3)	64.4+/-0.5%	% 3.3+∕−0.1%	8.68+/-0.30	1398+/-48	0.81	22.7

Compare sqrt(s) = 350 GeV and sqrt(s) = 250 GeV, polarization (-0.8, +0.3) and (+0.8, -0.3)

Evaluated xsec error and validity of fitting using Toy MC generated from these fitted function shapes

	ε	Δσ/σ	xsec	Nsig	S/N	significance
350 GeV						
(-0.8,+0.3)	48.9+/-0.5%	4.9+/-0.2%	6.71+/-0.34	1092+/-55	0.4	17.7
(+0.8,-0.3)	47.8+/-0.5%	5.0+/-0.2%	4.53+/-0.26	720+/-41	0.75	17.8
250 GeV						
(-0.8,+0.3)	66.4+/-0.5%	3.6+/-0.1%	10.52+/-0.38	1747+/-64	0.37	21.7
(+0.8,-0.3)	64.4+/-0.5%	3.3+/-0.1%	8.68+/-0.30	1398+/-48	0.81	22.7

 $\Delta \sigma / \sigma$ almost no difference between 2 polarization scenarios

◆ for (+0.8, -0.3) : S/N much higher:

- WW BGs significantly suppressed (< 1/10 of (-0.8, *0.3)), other major BGs less also
- however statistics is lower

Summary

- Higgs recoil study using $e+e- \rightarrow ZH \rightarrow \mu+\mu-H @ Ec.m.s = 350 GeV$, L = 333 fb-1
- optimization of data selection method
- compared with @ Ec.m.s. = 250 GeV, L = 250 fb-1
- Compared different polarization scenarios : (-0.8, 0.3) vs (+ 0.8, -0.3)

```
< Preliminary results > 

<u>350 GeV:</u>

(-0.8, +0.3) \Delta\sigma / \sigma = 4.9 +/-0.2 \%, \epsilon_{sig} = 48.9 +/-0.5 \%, S/B ~ 0.40

(+0.8, -0.3) \Delta\sigma / \sigma = 5.0 +/-0.2 \%, \epsilon_{sig} = 47.8 +/-0.5 \%, S/B ~ 0.75,

<u>250 GeV:</u>

(-0.8, +0.3) \Delta\sigma / \sigma = 3.6 +/-0.1 \%, \epsilon_{sig} = 66.4 +/-0.5 \%, S/B ~ 0.37

(+0.8, -0.3) \Delta\sigma / \sigma = 3.3 +/-0.1 \%, \epsilon_{sig} = 64.4 +/-0.5 \%, S/B ~ 0.81
```

• sqrt(s)=250 GeV has better $\Delta\sigma/\sigma$ and signal efficiency

• (+0.8, -0.3) has better S/N , but lower statistics, $\Delta\sigma/\sigma$ almost same as nominal

Plans

- cut more BG without losing too much signal?
- improve data selection : Implement muon isolation and likelihood cut ?
- study precision of fitted recoil mass M_H
- study alternative polarization scenarios e.g. (-0.8, 0) (+0.8, 0) ... ect...

we should balance merits of physics and accelerator issues , esp for 250 GeV

BACKUP

Sqrt(s)=350 GeV

Toy MC 10000 seeds

for the two polarization scenarios: Relative cross section error consistent within ranges of RMS spread

Input #of events according to Poisson distr (mean = real # of input)

dilepton PT, 350 GeV

do cut : 10 GeV< pT_dl < 140 GeV

Signal sample:

Pe2e2h_.eL.pR & Pe2e2h_eR.pL

relevant BG process for Zmumu

- 4f_ZZ_leptonic
- 4f_ZZ_semileptonic
- 2f_Z_leptonic
- 4f_WW_leptonic
- 4f_WW_semileptonic
- 4fSingleZee_leptonic
- 4fSingleZnunu_leptonic
- 4f_ZZWWMix_leptonic
- 6f backgrounds (sqrt(s)=350 GeV)

<u>after all cuts, dominant BG are:</u> sqrt(s) = 250 GeV : #1) 2f_Z_l #2) 4f_ZZ_sl #3) 4f_ZZWWMix_l

sqrt(s) = 350 GeV : #1) 4f_ZZ_sl #2) 2f_Z_l #3) 4f_WW_sl
no ttbar BG left after data selection

• preliminary comparison of cut efficiency between MC truth and reconstructed for 350 GeV signal and a few dominant BGs : integrated under histograms, counted in region 123-135 GeV

Rec						
cut	signal	eff	4f_ZZ_sl	eff	2f_Z_I	eff
raw	2288	100%	188087	100.00%	2226361	100.00%
only best mu pair	2214	97%	25217	13.41%	329581	14.80%
cos(trackAng)<0.98	2202	96%	19906	10.58%	305146	13.71%
84 <m_inv <98<="" th=""><th>1824</th><th>80%</th><th>5314</th><th>2.83%</th><th>94671</th><th>4.25%</th></m_inv>	1824	80%	5314	2.83%	94671	4.25%
10 <p_tdl<140< th=""><th>1817</th><th>79%</th><th>5198</th><th>2.76%</th><th>26063</th><th>1.17%</th></p_tdl<140<>	1817	79%	5198	2.76%	26063	1.17%
copl < 3	1790	78%	4853	2.58%	22766	1.02%
cos(<i>θ</i> Z)<0.91	1707	75%	3672	1.95%	10765	0.48%
120 GeV <m_rec< th=""><th></th><th></th><th></th><th></th><th></th><th></th></m_rec<>						
<140 GeV	1089	48%	1133	0.60%	1050	0.05%

MC						
cut	signal	eff	4f_ZZ_sl	eff	2f_Z_I	eff
raw	2288	100%	188087	100.00%	2226361	100.00%
only best mu pair	2288	100%	26219	13.94%	417982	18.77%
cos(trackAng)<0.98	2208	97%	17385	9.24%	306297	13.76%
84 <m_inv <98<="" th=""><th>1981</th><th>87%</th><th>5115</th><th>2.72%</th><th>102691</th><th>4.61%</th></m_inv>	1981	87%	5115	2.72%	102691	4.61%
10 <p_tdl<140< th=""><th>1945</th><th>85%</th><th>5006</th><th>2.66%</th><th>24539</th><th>1.10%</th></p_tdl<140<>	1945	85%	5006	2.66%	24539	1.10%
copl < 3	1945	85%	4691	2.49%	24539	1.10%
cos(<i>θ</i> Z)<0.91	1852	81%	3599	1.91%	11813	0.53%
120 GeV <m_rec< th=""><th></th><th></th><th></th><th></th><th></th><th></th></m_rec<>						
<140 GeV	1256	55%	1056	0.56%	986	0.04%