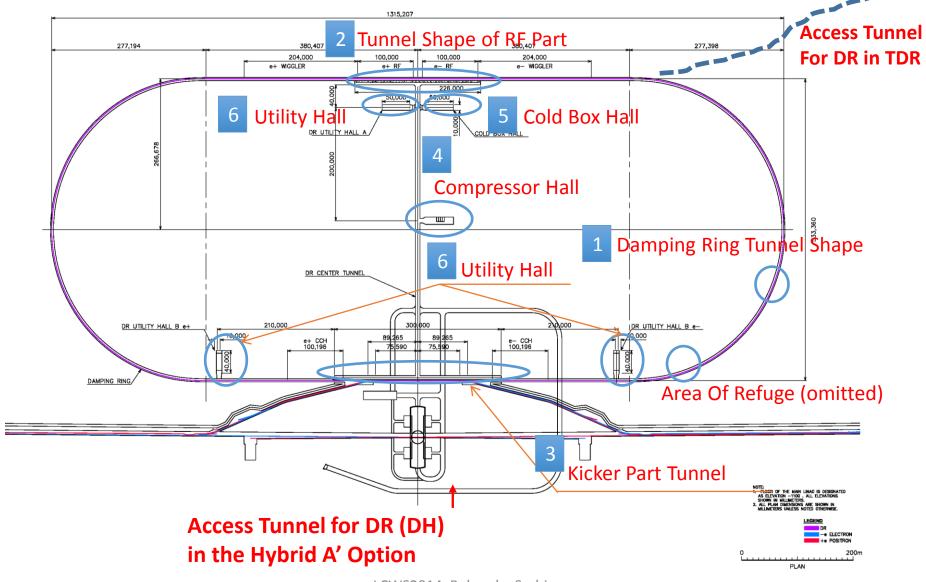
Introduction

Damping Ring Civil Design for Asian Region

Introduction of the Presenter

- Presenter: Go ORUKAWA-san
- Department of Civil Engineering in <u>J-Power</u>

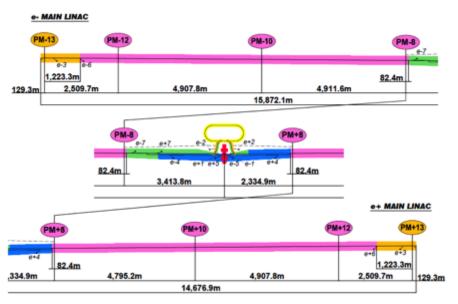

■ J-Power:

- Originally J-Power was the National Policy Corporation of Japanese government.
- ➤ It became a private company now completely 10 years ago.

Contents

- Damping Ring Configuration in Asian Region
- Some considerations after TDR
- Utility Cavern including Cold Box yard
- Evacuation Simulation

Damping Ring Configuration for Asian Region in case of the Hybrid A' Option



Asian Site Conventional Facility – Introduction

(Site) Mountainous green field not far from big towns, accessible with existing roads. (Facility) Smaller surface structures and underground structures. **Damping Ring** Granite_ **Detector Hall** Ring To Main Linac (RTML) PM+12 PM+13 PMI+10 PM-ab Surface Structures PM-8 PM-10 PM-12 **Slope < 7%**) **Access Hall** (Center Campus) RTML turn-around hoto shows a similar site image but does not show the real site.

WBS 1.7.1 Civil Engineering - (1) Project Scope

- **Dimension**
- **Underground Volume**
- Surface Area

ACCESS TUNNELS AND CAVERNS

NAME	PM-13	PM-12	PM-10	PM-8	IR HALL	D.R.	PM+8	PM+10	PM+12	PM-13
ACCESS T (WxH)m	8 x 7.5	8 x 7.5	8 x 7.5	8.7 x 8	8×7.5 11×11 11×9	8×7.5 11×9	8 x 7.5	8.7 x 8	8 x 7.5	9.7 x 8
CAVERN (WxLxH)m	15 x 41.3 x 15	20 x 180 x 13 15 x 41.3 x 15	20 x 180 x 13 15 x 41.3 x 15	20 x 180 x 13 15 x 41.3 x 15	25 x 142 x 41	10×68×8 10×40×8 13×50.3×12	20 x 180 x 13 15 x 41.3 x 15	20 x 180 x 13 15 x 41.3 x 15	20 x 180 x 13 15 x 41.3 x 15	15 x 41.3 x 15

Ę	DUMPS			
	MPD	e-1	SC TUNE UP DUMP	311 KW**
	MPD	e-2	EDRX TUNE UP DUMP	220 KW
	MPD	e-3	RTML TUNE UP DUMP	220 KW
	HPD	e-4	BDS TUNE UP DUMP	14 MW
	HPD	e-5	PRIMARY e-DUMP	14 MW*
	MPD	e-6	RTML TUNE UP DUMP	220 KW
	MPD	0.7	ELECTRON EAST ABORT DUMP	250 KW

	MPD	e+1	SC TUNE UP DUMP	311 KW**
	MPD	e+2	PDRX TUNE UP DUMP	220 KW
	MPD	e+3	RTML TUNE UP DUMP	220 KW
	HPD	e+4	BDS TUNE UP DUMP	14 MW
	HPD	e+5	PRIMARY e+DUMP	14 MW*
	MPD	e+6	RTML TUNE UP DUMP	220 KW
	MPD	e+7	TARGET DUMP	200 KW*

BEAM ABORT WIDENING (>

POINT	SOURCES	RTML, PLTR & ELTR	BDS
	e-1, e+1, e-7 & e+7	e-2, e-3, e-6, e+2, e+3 & e+6	e+4, e-4, e+5 & e-5
(W x L)m	WITHIN TUNNEL	10 x 32	20 x 42

MUON WALL WIDENINGS (4) WITHIN (LxW)m

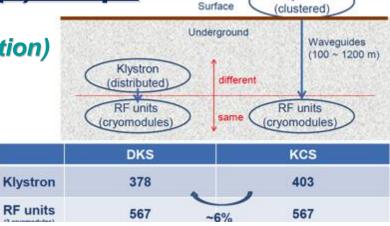
SOURCE AREA	QTY	AREA (m2)	% AREA
e- Source	0	0	0.0%
e* Source	0	0	0.0%
Damping Ring	0	0	0.0%
RTML	0	0	0.0%
Main Lines	65	22,375	24.5%
ios .	10	3,650	4.0%
N .	28	65,250	71.5%
TOTAL	103	91,275	100.0%

TUNNELS WIDTH (M)

AREA SYSTEM	e-INJECT. BDS & SERVICE	DAMPING RING	MAIN LINAC BEAM	e SOURCE RTML, PLTR & ELTR	e+ INJECT. BDS & SERVICE
AMERICA-width M	4.5 SER. TUNNEL+ 4.5 x 4.5 W / WIDENED AREAS	5.5	5.0	4.5 SER. TUNNEL+ 4.5 x 4.5 W / WIDENED AREAS	4.5 SER. TUNNEL+ 5.0 W/ WIDENED AREAS
EUROPE-width M	-	-	-	-	-
ASIA-width x height M	8.0 x 5.0 BDS TUNNEL + 4.5 x 4.0 SER. TUNNEL	5.5 x 4.7 D.R. + 11.0 x 5.5 WIDENED AREA	11.0 x 5.5, 8.0 x 5.0 M.L.+ 4.5 x 4.0 SER. TUNNEL	11.0 x 5.5 RTML, PLTR & ELTR + 4.5 x 4.0 LOOP PART	8.0 x 5.0 BDS TUNNEL + 4.5 x 4.0 SER. TUNNEL

WBS 1.7 - (1) Costing Base

Two Japanese design consultants have studied the ILC conventional facility and done the estimates except handling, survey and alignment. Tunnel cost estimates were guided by the Ministry Standard. The major civil costs were checked by the past project data. The electrical and mechanical costs were estimated on the basis of the past projects and by hearing the major equipment costs from the companies.


Cost Item	TDR Who estimated?	How estimated?	RDR Who?	How?
1.7.1 Civil	JPOWER→ GC (Nikken Sekkei→GCs)	Ministry Standard used for Beam tunnels, Project data for others	Nikken→ GCs	Past projects (TBM/NATM)
1.7.2 Electrical	Nikken	Project data, hearing.	Nikken (HV) Europe (Others)	Project data.
1.7.3-5 Mechanical	Nikken	Project data, hearing.	Americas	
(1.7.6 Handling)	Europe		Europe	
1.7.7 Safety	Nikken	Project data.	Nikken	Project data.
(1.7.8 Survey & Alignment)	Europe		Europe	

→: Hearing GC: general contractor

WBS 1.7.2 Asian Electric Cost – (1) Scope

- Power loads for DKS MLs and CFs
- TDR baseline (half beam power operation)

Klystron

DKS Power Load in MW (TDR baseline - Low Power)

Area System	RF Power	Racks	NC	Cnvo	Conventional		Total
Area System	Kr Fowei		magnets	Cryo	Normal	Emerg	Total
e- sources	1.28	0.09	0.73	0.80	1.47	0.50	4.87
e+ sources	1.39	0.09	4.94	0.59	1.83	0.48	9.32
DR	8.67		2.97	1.45	1.93	0.70	15.72
RTML	4.76	0.32	1.26	part of ML cryo	1.19	0.87	8.40
Main Linac	52.13	4.66	0.91	32.00	12.10	4.30	106.10
BDS			10.43	0.41	1.34	0.20	12.38
Dumps					0.00	1.21	1.21
IR			1.16	2.65	0.90	0.96	5.67
TOTALS	68.2	5.2	22.4	37.9	20.8	9.2	164

(Americas) 74.2 MW

14.6 MW 6.4 MW **161 MW**

<u>Mechanical Design – Asian Region (1)</u>

Heat loads for DKS MLs and CF s

DKS Thermal Loads in MW (TDR baseline - Low Power)

Area System	load to LCW	load to Air	Conven tional	Cryo (Water load)	Total
e- sources	1.40	0.70	1.87	0.80	4.77
e+ sources	5.82	0.64	2.27	0.59	9.32
DR	10.92	0.73	2.69	1.45	15.79
RTML	4.16	0.76	2.02	part of ML cryo	6.94
Main Linac	42.17	5.57	16.89	32.00	96.63
BDS	9.20	1.23	1.68	0.41	12.52
Dumps	14.00		1.12		15.12
IR	0.40	0.76	1.79	2.65	5.60
TOTALS	88.1	10.4	30.3	37.9	167

(Americas) 13.5 MW

154 MW