Combined Fits of Higgs Couplings at CLIC

Frank Simon Max-Planck-Institute for Physics

on behalf of the CLIC Detector and Physics Study

Ap. Ag > 1t

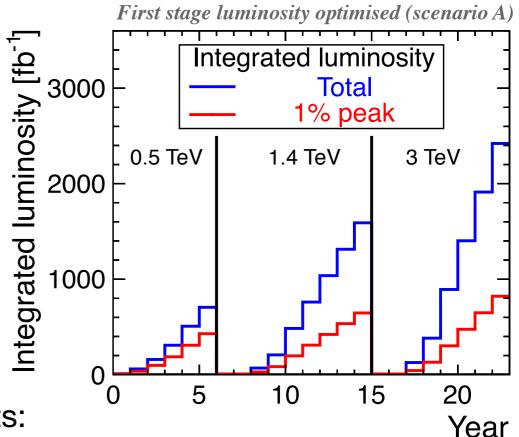
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

LCWS 2014 Belgrade, October 2014

Outline

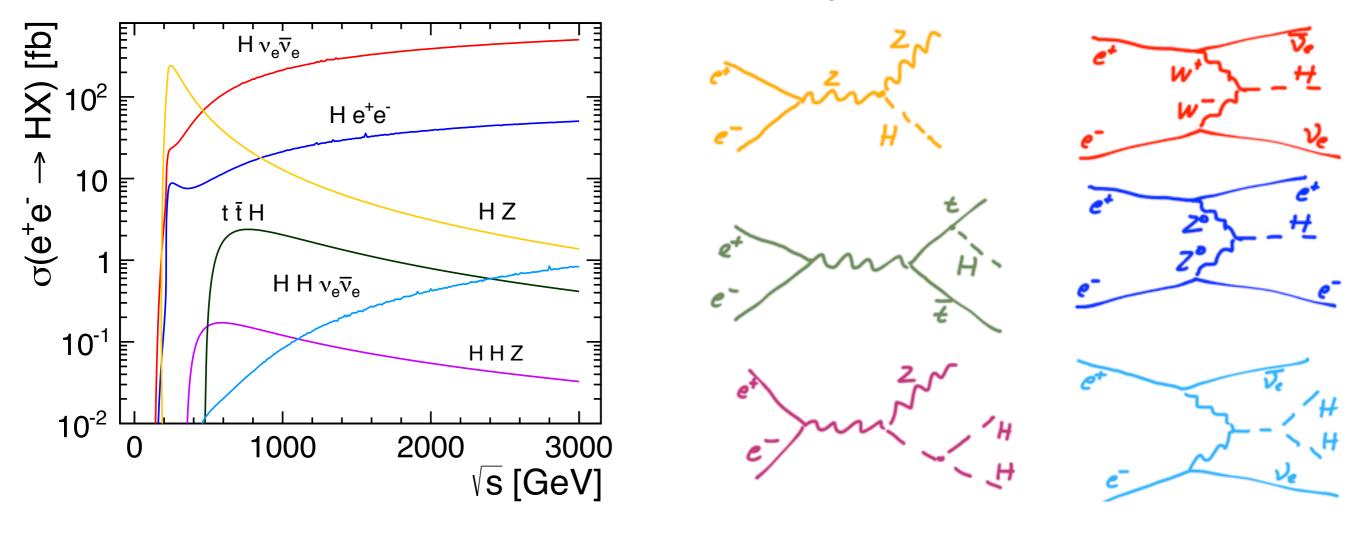
- Introduction: A staged Higgs physics program at CLIC
- Global fits of couplings
 - Model-independent and model-dependent fits
 - Handling correlations
 - Fit results
- Summary

A Staged Program to maximize Physics Potential


 For optimal luminosity, the energy of a collider based on CLIC technology can only be varied within a factor of ~ 3: Staged construction of the machine

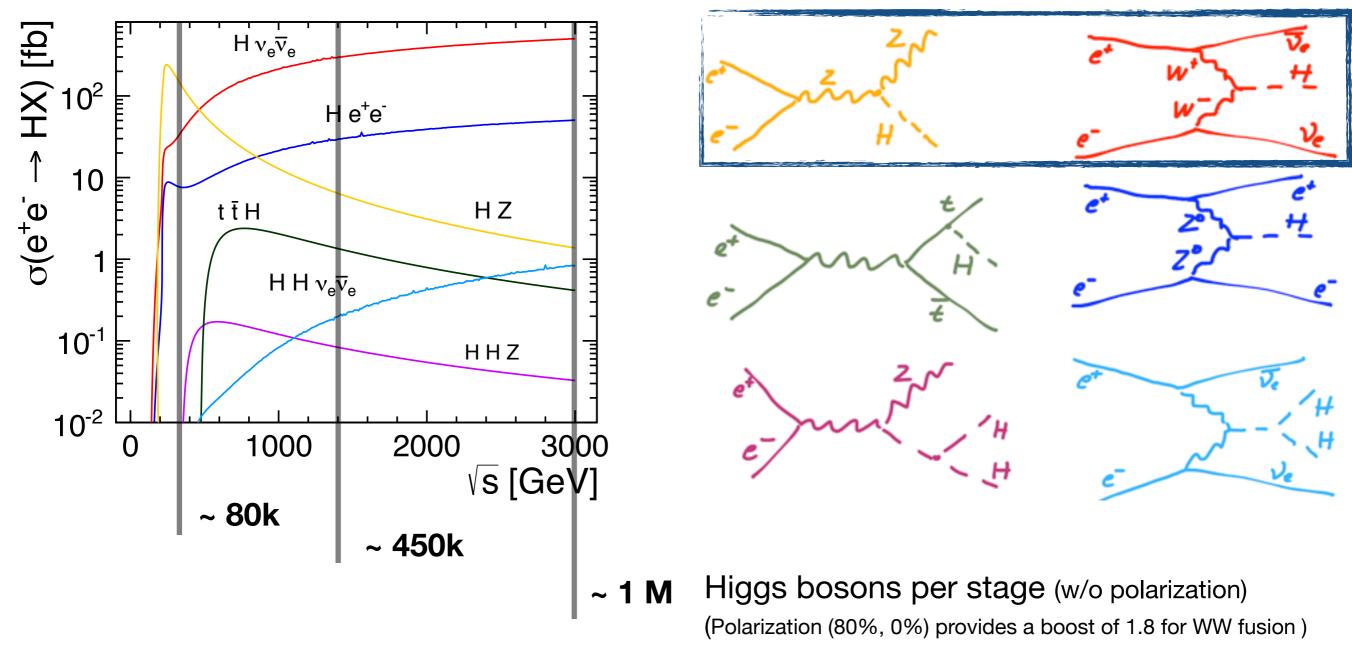
Provides:

- earlier start of physics
- optimal use of physics potential
- Precise energy of the stages depends on physics - with considerations for technical constraints:
 - Studied scenario:
 - 350 / 375 GeV (500 fb⁻¹)
 - Higgs (including total width), Top threshold scan
 - 1.4 TeV (1.5 ab⁻¹)
 - BSM physics, ttH, Higgs self-coupling, rare Higgs decays
 - 3 TeV (2 ab⁻¹)
 - BSM physics, Higgs self-coupling, rare Higgs decays



Higgs Physics at CLIC

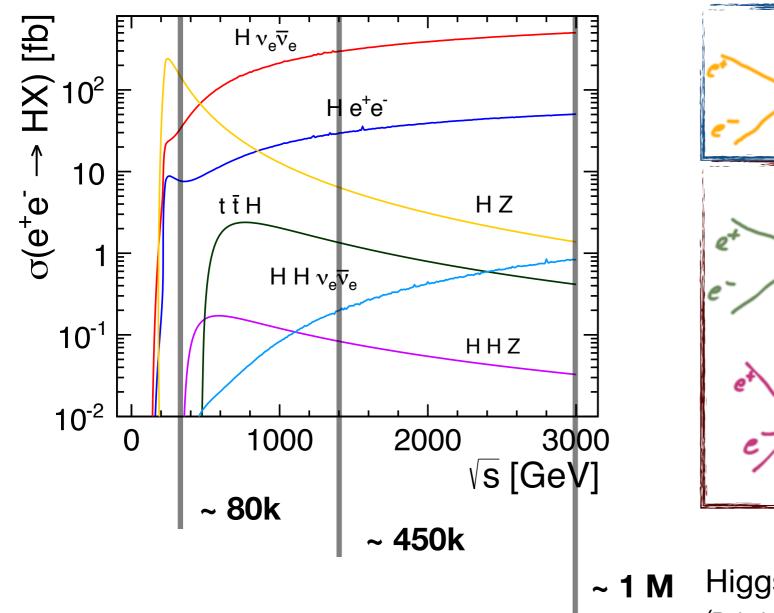
• Measurement of different processes at different energies

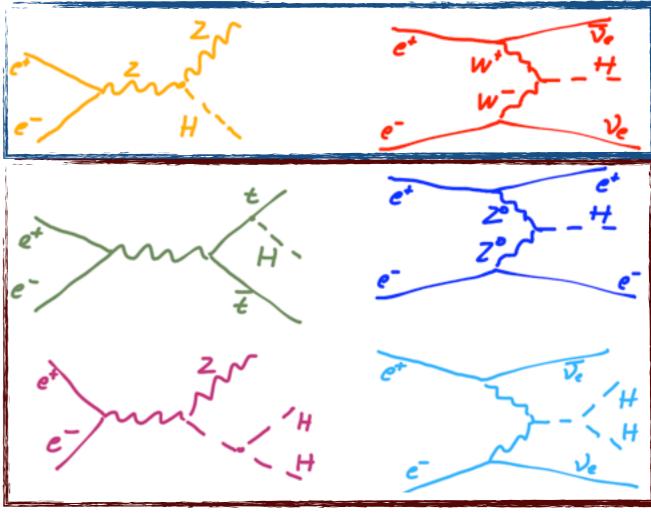

Combined Fits of Higgs Couplings at CLIC LCWS2014, Belgrade, September 2014

Frank Simon (fsimon@mpp.mpg.de)

Higgs Physics at CLIC

• Measurement of different processes at different energies


Main production modes - give access to couplings and total width



Higgs Physics at CLIC

• Measurement of different processes at different energies

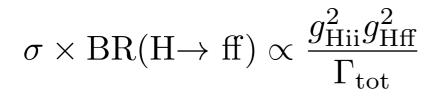
M Higgs bosons per stage (w/o polarization) (Polarization (80%, 0%) provides a boost of 1.8 for WW fusion)

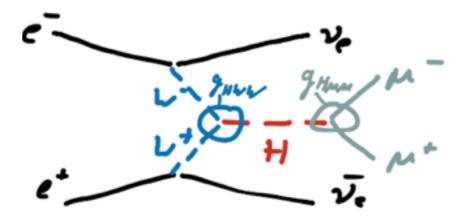
Main production modes - give access to couplings and total width

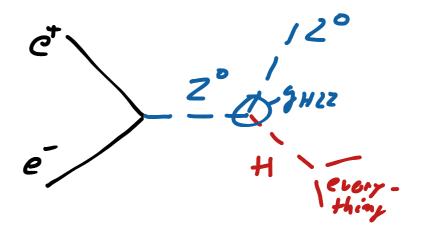
Rarer Processes - ZZ fusion, direct access to top Yukawa, self-coupling

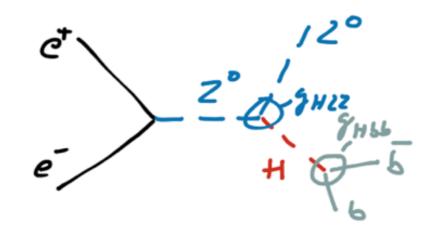
Combined Fits of Higgs Couplings at CLIC LCWS2014, Belgrade, September 2014

Frank Simon (fsimon@mpp.mpg.de)


Exploring the Higgs Sector: Couplings


• The measurements at CLIC (and other lepton colliders) are:


 σ x BR (for specific Higgs decays) σ (for model-independent recoil mass analysis)


Both are sensitive to couplings:

 $\sigma_{
m recoil} \propto g_{
m HZZ}^2$

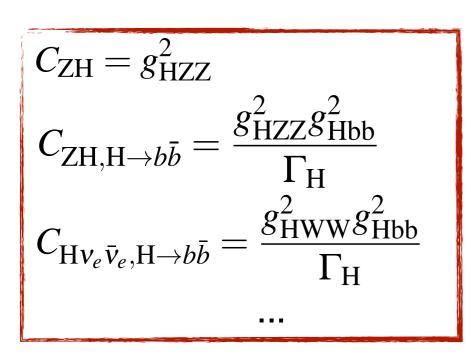
Combined Fits of Higgs Couplings at CLIC LCWS2014, Belgrade, September 2014

The total width: A Case for 350 GeV

- A crucial ingredient to obtain the couplings: The total width
 - best results when combining ZH and VBF 350 GeV ideal

$$\begin{aligned} \sigma(\mathrm{H}\nu_{e}\nu_{e}) \times \mathrm{BR}(\mathrm{H} \to \mathrm{WW}^{*}) \propto \frac{g_{\mathrm{HWW}}^{4}}{\Gamma_{\mathrm{tot}}} \\ \frac{\sigma(e^{+}e^{-} \to \mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to b\bar{b})}{\sigma(e^{+}e^{-} \to \mathrm{H}\nu_{e}\nu_{e}) \times \mathrm{BR}(\mathrm{H} \to b\bar{b})} \propto \frac{g_{\mathrm{HZZ}}^{2}}{g_{\mathrm{HWW}}^{2}} \end{aligned}$$

model-independent determination of g_{HWW} : connection to model-independent g_{HZZ} from recoil via high-BR H->bb decays in both production modes


The Full Picture: Global Fits

 From the measurements of σ and σ x BR the couplings and the total width are determined by a global fit:

$$\chi^2 = \sum_i \frac{(C_i - 1)^2}{\Delta F_i^2} \qquad \qquad \Delta F_i:$$
(σ οι

 ΔF_i : uncertainty of measurement (σ or $\sigma x BR$)

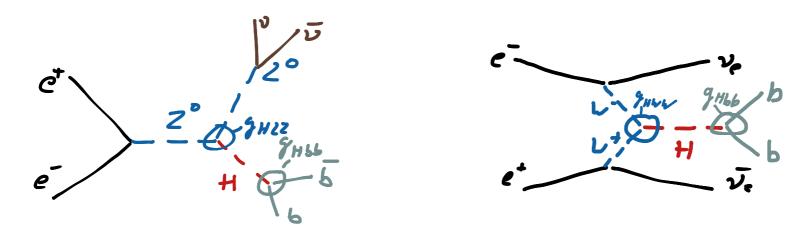
Two fits:

Model-independent fit - total width as a free parameter

Model-dependent fit - LHC-like constraints

Assumptions: No BSM decays, the total width can be described by a few parameters which parametrize deviations of partial widths from the SM expectation

$$\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i|_{\rm SM}}$$
 $\Gamma_{\rm H,md} = \sum_i \kappa_i^2 BR_i$


In the fit: replace g_{Hii} with κ_{Hii} , Γ_H with $\Gamma_{H,md}$

A Special Case: H->Jets at 350 GeV

- The 350 GeV analysis of H->Jets (bb, cc, gg) uses all production modes
 - Hvv final states receive a ~ 1:1 contribution of ZH and VBF, which are indistinguishable on an event-by-event basis

- Combined extraction of ZH and VBF contributions (for high-statistics bb final state only)
- Common event selection for bb, cc, gg final states, separation primarily based on flavor tagging
- Correlations between measurements

see talk by Marco Szalay this afternoon

Handling Correlations / Combinations at 350 GeV

- Six correlation terms (since the cc and gg final states are treated inclusively in the analysis)
 - bb(ZH)/bb(VBF), bb(ZH)/cc(inclusive), bb(ZH)/gg(inclusive), bb(VBF)/cc(inclusive), bb(VBF)/gg(inclusive), cc(inclusive)/gg(inclusive) (correlation terms vary between a few % and -45% (H->bb in ZH and VBF))

one example:

$$\begin{split} \Delta\chi^2 &= 2 \times corr(ZH, H \to bb; VBF, H \to bb) \times \left(\frac{g_{HZZ}^2 g_{Hbb}^2}{\Gamma_H} - 1\right) \times \left(\frac{g_{HWW}^2 g_{Hbb}^2}{\Gamma_H} - 1\right) \\ &/((\sigma \times BR(ZH, H \to bb)) \times (\sigma \times BR(VBF, H \to bb)) \end{split}$$

Handling Correlations / Combinations at 350 GeV

- Six correlation terms (since the cc and gg final states are treated inclusively in the analysis)
 - bb(ZH)/bb(VBF), bb(ZH)/cc(inclusive), bb(ZH)/gg(inclusive), bb(VBF)/cc(inclusive), bb(VBF)/gg(inclusive), cc(inclusive)/gg(inclusive)
 (correlation terms vary between a few % and -45% (H->bb in ZH and VBF))

one example:

$$\begin{aligned} \Delta\chi^2 &= 2 \times corr(ZH, H \to bb; VBF, H \to bb) \times \left(\frac{g_{HZZ}^2 g_{Hbb}^2}{\Gamma_H} - 1\right) \times \left(\frac{g_{HWW}^2 g_{Hbb}^2}{\Gamma_H} - 1\right) \\ &/((\sigma \times BR(ZH, H \to bb)) \times (\sigma \times BR(VBF, H \to bb)) \end{aligned}$$

- Combined measurements of ZH and VBF in H->cc, gg:
 - Use ratio of VBF to ZH determined for H->bb final states
 - In the fit, the σ x BR of those two channels is expressed as a ZH / VBF combination:

$$\sigma \times \mathrm{BR}(\mathrm{H} \to \mathrm{cc}) \propto (1 - \mathrm{VBF}) \frac{g_{\mathrm{HZZ}}^2 g_{\mathrm{Hcc}}^2}{\Gamma_{\mathrm{tot}}} + \mathrm{VBF} \frac{g_{\mathrm{HWW}}^2 g_{\mathrm{Hcc}}^2}{\Gamma_{\mathrm{tot}}}$$

The Impact of Correlations on the Fit

- Model-independent fit:
 - Including the ZH / VBF combination improves g_{Hcc} and g_{Hgg} by about 3%
 - Including correlations in addition:
 - g_{Hcc} and g_{Hgg} are slightly deteriorated again, coming out close to the values w/o correlations (within ~ 1%)
 - g_{Hbb} is deteriorated by ~ 5%
 - g_{HWW} is improved by ~3%
 - total width is improved by ~1.5%
- Model-dependent fit:
 - in general no improvement with inclusion of correlations -~8% penalty on κ_{HZZ}, 3% on κ_{HWW}, ~2% on κ_{Hcc}, κ_{Hgg}

The Impact of Correlations on the Fit

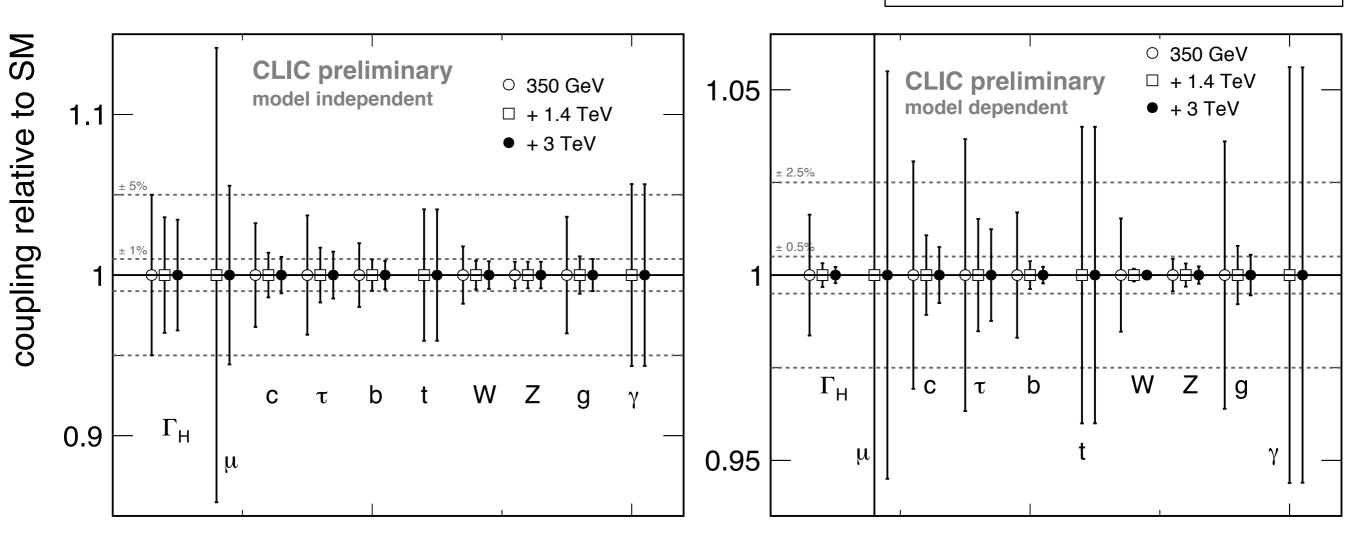
- Model-independent fit:
 - Including the ZH / VBF combination improves g_{Hcc} and g_{Hgg} by about 3%
 - Including correlations in addition: \bullet
 - g_{Hcc} and g_{Hgg} are slightly deteriorated again, coming out close to the values w/o correlations (within $\sim 1\%$)
 - g_{Hbb} is deteriorated by ~ 5%
 - g_{HWW} is improved by ~3%
 - total width is improved by ~1.5%
- Model-dependent fit:
 - in general no improvement with inclusion of correlations -~8% penalty on κ_{HZZ} , 3% on κ_{HWW} , ~2% on κ_{Hcc} , κ_{Hgg}

 \Rightarrow in general the effects of correlations are small - "nice to have", but not absolutely necessary for the analysis.

Measurement Summary

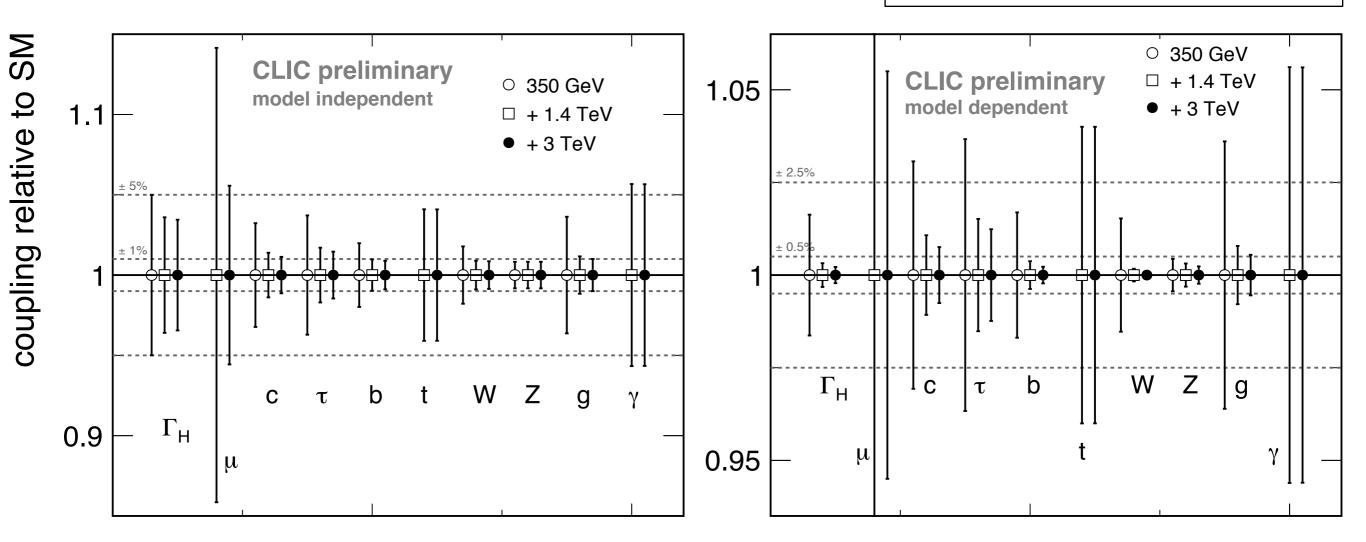
			Statistical precision		
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500 \ \mathrm{fb}^{-1}$	$1.5 \ {\rm ab}^{-1}$	$2.0 \ ab^{-1}$
ZH	Recoil mass distribution	m _H	120 MeV	_	_
ZH	$\sigma(\text{HZ}) \times BR(\text{H} \rightarrow \text{invisible})$	Γ_{inv}	0.6%	-	-
ZH	$H \rightarrow b\overline{b}$ mass distribution	m _H	tbd	-	-
$Hv_e\overline{v}_e$	$H \rightarrow b \overline{b}$ mass distribution	$m_{ m H}$	—	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$	$g^2_{\rm HZZ}$	1.8%	-	-
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	$1\%^\dagger$	_	-
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	$5\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{gg})$		$6\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \tau^+ \tau^-)$	$g_{ m HZZ}^2 g_{ m H\tau\tau}^2/\Gamma_{ m H}$	6.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$	$g_{ m HZZ}^2 g_{ m HWW}^2 / \Gamma_{ m H}$	$2\%^{\dagger}$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g_{\rm HZZ}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	tbd	_	_
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	3%†	0.3%	0.2%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	_	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{gg})$		_	1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \tau^{+}\tau^{-})$	$g_{\rm HWW}^2 g_{\rm H\tau\tau}^2 / \Gamma_{\rm H}$	_	4.2%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mu^{+}\mu^{-})$	$g_{\rm HWW}^2 g_{\rm H\mu\mu}^2 / \Gamma_{\rm H}$	_	38%	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \gamma\gamma)$		_	15%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		_	42%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	1.4%	$0.9\%^{\dagger}$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	_	3%†	$2\%^{\dagger}$
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HZZ}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	_	$1\%^{\dagger}$	$0.7\%^{\dagger}$
tīH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	-	8%	tbd
$HHv_e\overline{v}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	<i>S</i> HHWW	_	7%*	3%*
$HHv_e\overline{v}_e$	$\sigma(HHv_e\bar{v}_e)$	λ	_	32%	16%
$HH\nu_e\overline{\nu}_e$	with $-80\% e^-$ polarization	λ	_	24%	12%

work in progress - current status


Combined Fits of Higgs Couplings at CLIC LCWS2014, Belgrade, September 2014

Fit Results - Current Status

work in progress - current status


correlations for 350 GeV H->bb, cc, gg not included, input measurements include preliminary estimates

Fit Results - Current Status

work in progress - current status

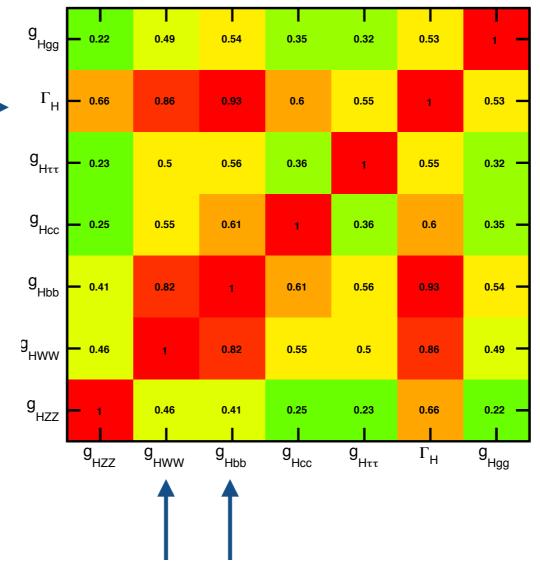
correlations for 350 GeV H->bb, cc, gg not included, input measurements include preliminary estimates

model-independent 1% - level determination of most couplings in full program 1% to few ‰ with LHC-like model-dependence

Fit Results

• Model-independent:

• Model-dependent:


Parameter	Measurement precision			Parameter	Measurement precision		
	350 GeV 500 fb ⁻¹	+ 1.4 TeV +1.5 ab^{-1}	$+3.0 \text{ TeV} +2.0 \text{ ab}^{-1}$		350 GeV 500 fb ⁻¹	+ 1.4 TeV +1.5 ab^{-1}	$+3.0 \text{ TeV} +2.0 \text{ ab}^{-1}$
<i>8</i> HZZ	0.8 %	0.8%	0.8%	K _{HZZ}	0.44 %	0.31 %	0.23 %
<i>8</i> HWW	1.8 %	0.9~%	0.9%	$\kappa_{ m HWW}$	1.5 %	0.17~%	0.11 %
<i>g</i> Hbb	2.0%	1.0%	0.9%	<i>K</i> _{Hbb}	1.7 %	0.37 %	0.22~%
<i>g</i> Hcc	3.2 %	1.4 %	1.1 %	K _{Hcc}	3.1 %	1.1 %	0.75~%
$g_{ m H au au}$	3.7 %	1.7 %	1.5 %	$\kappa_{ m H au au}$	3.7 %	1.5 %	1.2~%
$g_{ m H\mu\mu}$	_	14.1 %	5.6 %	$\kappa_{ m H\mu\mu}$	—	14.1 %	5.5 %
<i>g</i> Htt	_	4.1 %	\leq 4.1 %	K _{Htt}	—	4.0~%	$\leq 4.0\%$
	3.6 %	1.2 %	1.0 %	$\kappa_{ m Hgg}$	3.6 %	0.79~%	0.55~%
$g^{\dagger}_{ m Hgg} \ g^{\dagger}_{ m H\gamma\gamma}$	5.0 %			$\kappa_{\rm H\gamma\gamma}$	—	5.6%	< 5.6 %
$g_{ m H\gamma\gamma}$		5.7 %	< 5.7 %		1.6 %	0.32 %	0.22 %
$\Gamma_{ m H}$	5.0%	3.6%	3.4 %	$\Gamma_{\mathrm{H},md,derived}$	1.0 /0	0.52 /0	0.22 /0

Fit Results - Fit Drivers

Understanding the fit drivers: Parameter correlations

Model-independent fit, 350 GeV only

very strong correlation between Гн, ghww, ghbb, ghzz: Width determination relies on H->bb in ZH and WBF

- Picture remains essentially unchanged for higher energies
- For model-dependent fit the correlations are substantially reduced - significant between g_{HWW} and g_{Hbb} at 350 GeV, moderate at higher energies

very strong correlation between gHWW and gHbb : model-independent W coupling determined through H->bb final states

Summary

- CLIC offers the opportunity of a comprehensive Higgs program three stages at 350 GeV, 1.4 TeV and 3 TeV provide precise measurements of all relevant processes
- The impact of the program is assessed by global fits to all measurements Two fit scenarios are studied
 - A model-independent fit with minimal assumptions
 - A model-dependent fit with "LHC-like" assumptions
- Correlations between measurements are implemented for the 350 GeV H->jets measurements - effects are on the few % level
- With the full program, most couplings can be determined
 - on the 1% level in a model-independent way
 - on the 1% to few ‰ level with "LHC-like" assumptions

