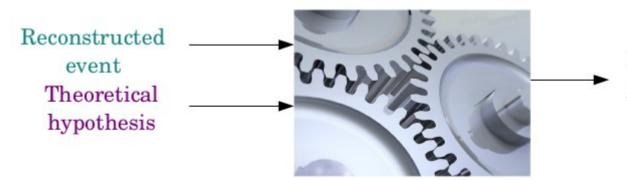


Applications of matrix element methods

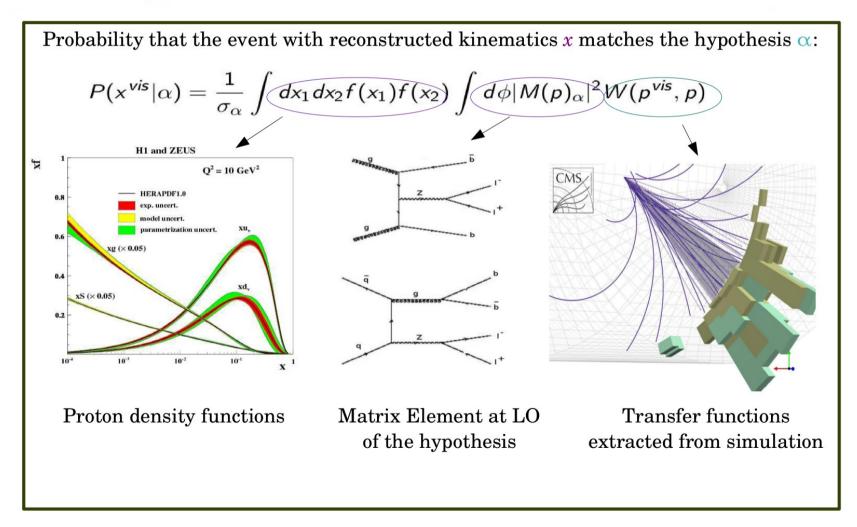
Adrien Caudron (UCLouvain – CP3) on behalf of ATLAS and CMS experiments

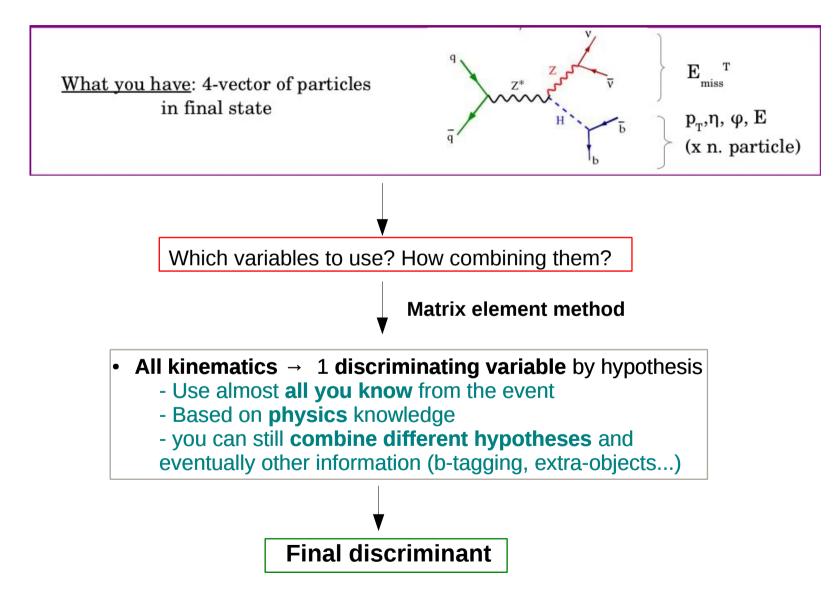

> LCWS 2014 6-10 October 2014 Belgrade, Serbia

Outline:

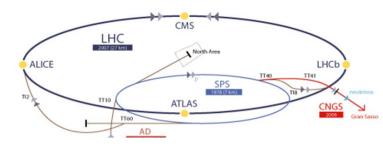
- Introduction to Matrix Element Method (MEM)
- Application to ATLAS and CMS:
 - * $H \rightarrow WW$ search
 - * ttH search with $H \rightarrow bb$
 - * H \rightarrow ZZ search and characterisation

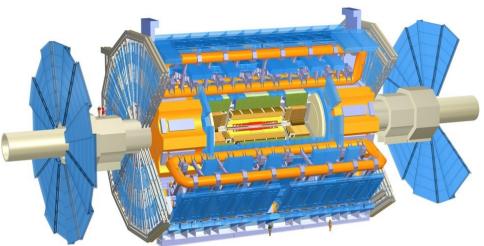
The Matrix Element Method

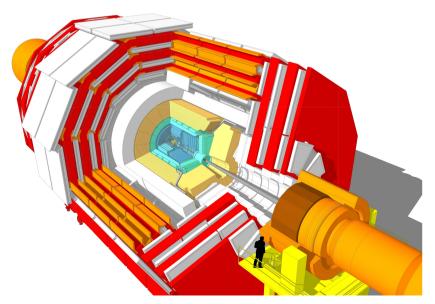

- Event by event discriminator based on matrix elements
- Usage of a maximal amount of theoretical information available from the hard process
- Combined with reconstruction level information


Probability that the event **matches** the hypothesis

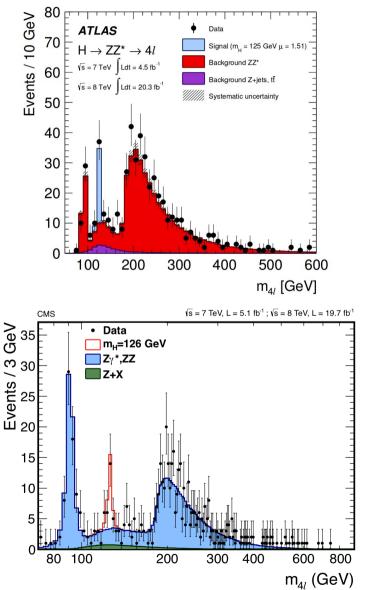
How does it work?


Building the discriminant

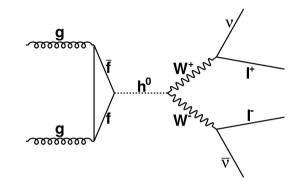

Why is it interesting?



ATLAS and CMS

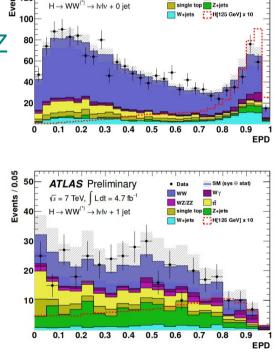

- Experiments at LHC
- Discovery of the Higgs boson in 2012
- ATLAS during LHC Run1:
 - 2010-2012: 4.7/fb + 20.3/fb at 7 TeV and 8 TeV
- CMS during LHC Run1:
 - 2010-2012: 5.1/fb + 19.7/fb at 7 TeV and 8 TeV

Application of Matrix Element Method


- $H \rightarrow WW$ search **MATLAS**
- ttH(bb) search
- H → ZZ
 - Higgs search
 - Spin/parity determination
 - HZZ vertex tensor structure

Search for $H \rightarrow WW$

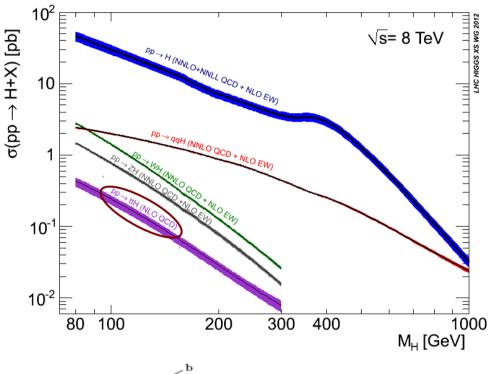
- $H \rightarrow WW \rightarrow IvIv (I = e, \mu)$:
 - 2 well reconstructed leptons
 - Missing energy from neutrinos
 - Poor mass resolution
- MEM used as a cross-check to the BDT analysis
 - Background hypotheses:
 - WW for categories 0/1 jet
 - ttbar for category with 1 jet
 - Difficulty: missing transverse energy
 - Integrate over the allowed phase space of the undetected neutrinos
 - Transfer function on jet energy

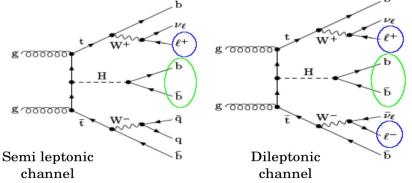


44 SM (sys I) stat

Search for $H \rightarrow WW$ Results

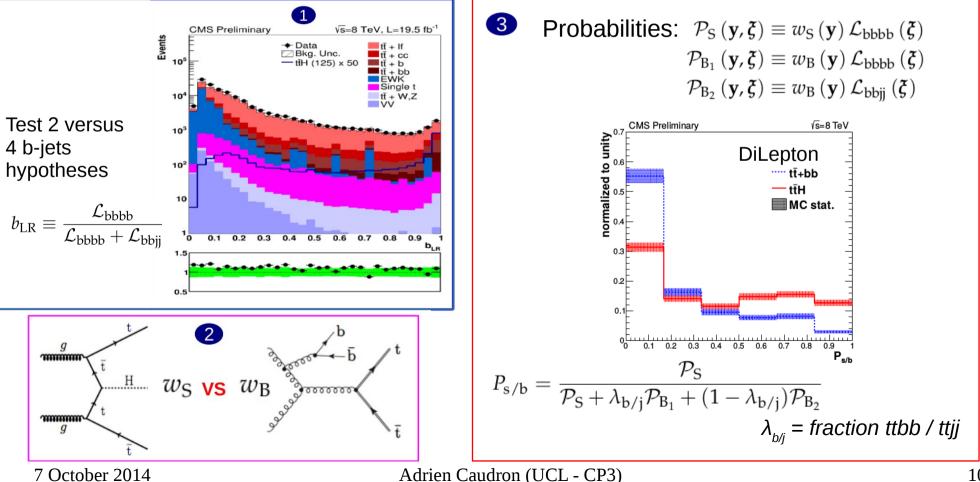
- Define P_s and P_b as event probability densities for the signal and the • background
 - Build a discriminant: $EPD = P_s/(P_s + P_b)$
 - Limited discrimination power for W/Z+jets and ZZ/WZ —
 - The discriminant is used to subdivide the events in bins of different sensitivity
- This simple use of ME is nevertheless competitive •

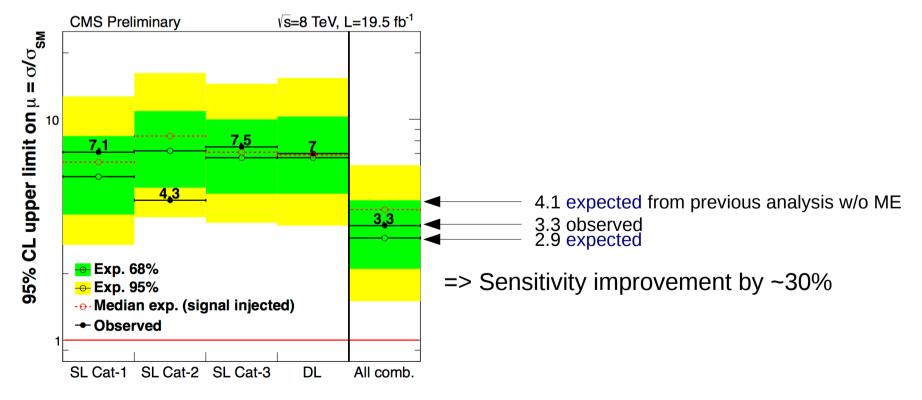

ATLAS Preliminary


 $\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 4.7 \text{ fb}$

120

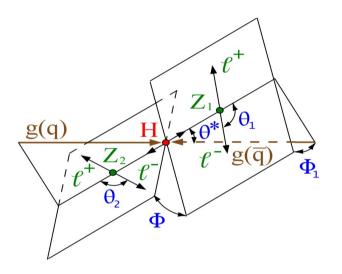
ttH, H \rightarrow bb search based on MEM


- One of the most challenging channel:
 - low production rate
 - H → bb highest BR but low M(bb) resolution
- Final states with lot of objects:
 - very distinctive signature
 - MEM:
 - Handles final state combinatorics
 - Discriminates against irreducible ttbb background

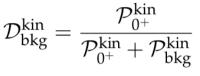

ttH, H \rightarrow bb search based on MEM

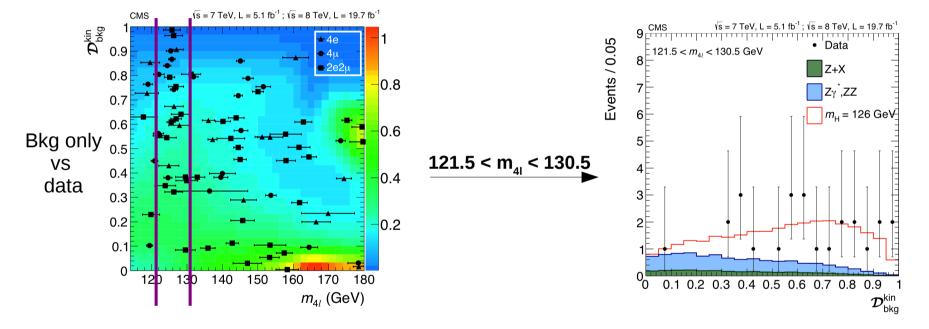
- Build likelihood ratio discriminant to distinguish signal and tt+bb/cc (irreducible bkg) from tt+light flavour
- Discrimination Signal and tt+bb/cc improved by the MEM
- 3 Build the final discriminant combining the MEM weights with b-tagging information

- Results:
 - Categorisation depending on the number of leptons and jets
 - Exclusion limits on x times the σ_{SM} :



$H \rightarrow ZZ$ analysis


- H \rightarrow ZZ \rightarrow 4 leptons (e, μ)
 - Clean channel → leptons very well measured
 - Main background: ZZ production
 - One of the main channel leading to the Higgs discovery
 - Well suited channel for studying Higgs properties
- Kinematic configuration of the 4-leptons in the centre of mass:
 - Helicity angles: $\vec{\Omega} \equiv (\theta^*, \Phi_1, \theta_1, \theta_2, \Phi)$
 - Sensitivity to the spin and parity
 - Z_1 and Z_2 masses
- Matrix Element Likelihood Approach (MELA):
 - Make use of the whole kinematic configuration of the system $\mathcal{P}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})$
 - Test of several hypotheses
 - Signal vs background (H \rightarrow ZZ vs ZZ)
 - Signal vs signal (test of spin and parity)
 - No integration → simplified approach
 - Possible thanks to good lepton reconstruction



$H \rightarrow ZZ \rightarrow 4I$ MEM for signal extraction

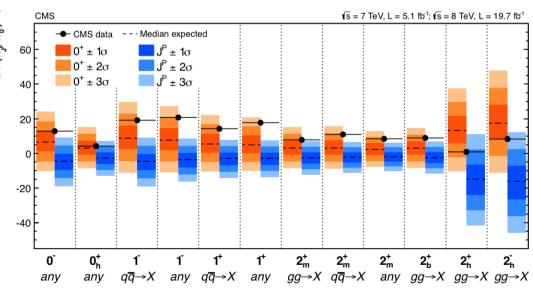
• Build discriminant $H \rightarrow ZZ (0^+) vs ZZ (bkg)$:

- Combined in a likelihood function
 - with m(4l) and $p_T(4l)$ in 0/1 jet categories
 - and with m(4I) and a discriminant for VBF production in the 2 jet category

Phys. Rev. D 89, 092007

$H \rightarrow ZZ \rightarrow 4I$ MEM for signal hypothesis test

• Same principle but test the spin and parity properties:


$$\mathcal{D}_{J^P} = \left[1 + \frac{\mathcal{P}_{J^P}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{0^+}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}\right]^{-1} \mathbf{J}^{\mathsf{P}} \text{ refer to the alternative hypothesis}$$

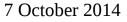
- Spin 1 and spin 2 \rightarrow reduce assumption on production mechanism: integrate the ME squared over the production angles $\cos\theta_*$ and Φ_1
- Background is identified with: $\mathcal{D}_{bkg} = \left[1 + \frac{\mathcal{P}_{bkg}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{bkg}^{mass}(m_{4\ell})}{\mathcal{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{si\sigma}^{mass}(m_{4\ell} | m_{0^+})}\right]^{-1}$
- Combined the 2 discriminants in a likelihood function:
 - A test statistics is performed:

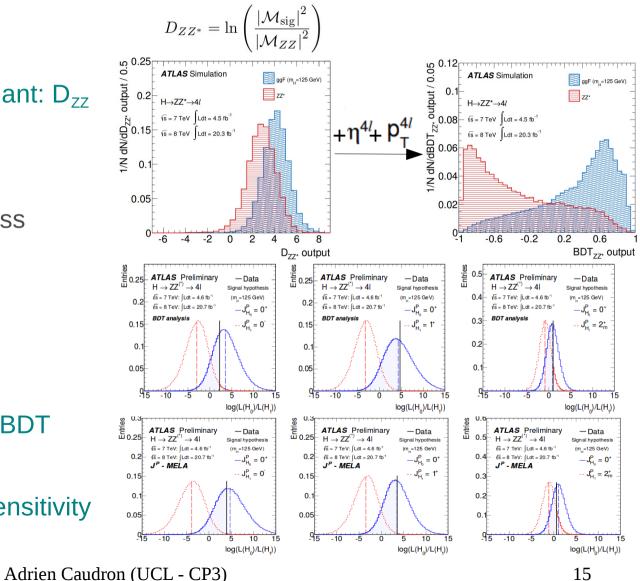
$$q = -2\ln(\mathcal{L}_{J^P}/\mathcal{L}_{0^+})$$

Hypotheses tested:

Phys. Rev. D 89, 092007 7 October 2014

ATLAS analyses

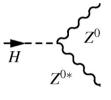

 $H \rightarrow ZZ \rightarrow 4$


- Signal extraction:
 - Use MELA to build a discriminant: D_{zz}
 - BDT with $D_{ZZ} + \eta^{4|} + p_{T}^{4|}$
 - used in a fit to extract the signal strength and mass

arXiv:1408.5191

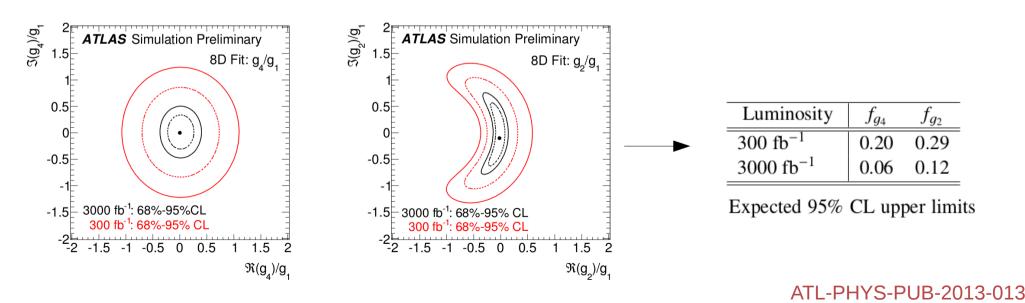
- Spin/parity determination:
 - MELA discriminant used as an alternative method to a BDT
 - Test statistics 0+ vs JP
 - MEM and BDT have similar sensitivity —

ATLAS-CONF-2013-013


15

Prospects: test HZZ vertex tensor structure

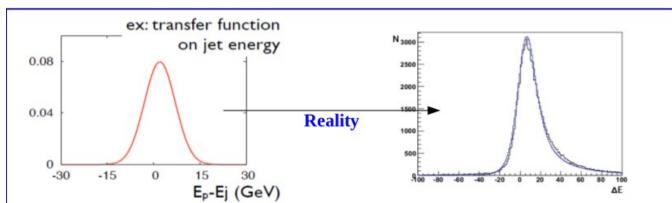
- Prospective studies at 14 TeV for HL-LHC
 - With 300 fb⁻¹ and 3000 fb⁻¹
 - Highly challenging environment: high PU...
- Test sensitivity to non-SM contribution to HZZ vertex: $--\frac{1}{H}$
 - Amplitude depends on 4 coupling constants:
 - g1: SM expectation
 - g2: beyond SM contribution in loop
 - *g*3 ~ 0
 - g4: CP-odd components
- Two strategies based on MEM:
 - Define set of sensitive variable built from the ME
 - ME analytical form in a likelihood (see next slide)
 - Both methods are competitive



Observable	Sensitivity		
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=0) ^2}{ \text{ME}(g_1=0,g_2=0,g_4=1) ^2}$	$ g_4 /g_1$		
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=-2+2i) ^2}{ \text{ME}(g_1=1,g_2=0,g_4=2+2i) ^2}$	$\Re(g_4)/g_1$		
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=2-2i) ^2}{ \text{ME}(g_1=1,g_2=0,g_4=2+2i) ^2}$	$\Im(g_4)/g_1$		
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1,g_4=0) ^2}$	$ g_2 /g_1$		
$\ln \frac{ \text{ME}(g_1=1,g_2=-1+i,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1+i,g_4=0) ^2}$	$\Re(g_2)/g_1$		
$\ln \frac{ \text{ME}(g_1=1,g_2=1-i,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1+i,g_4=0i) ^2}$	$\Im(g_2)/g_1$		

Test HZZ vertex tensor structure ME output as direct input to the fitted likelihood

- Define a pdf function from the ME:
 - Use this pdf in the likelihood function
 - Sensitive to coupling constants g_i (real and imaginary parts)
- Perform a fit in the plan: $(\Re(g_i)/g_1, \Im(g_i)/g_1)$
- 2D contour plots of the exclusion limits are derived
- Results expressed as limit on $f_{g_i} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}$


Conclusion

- Matrix Element Method powerful method
 - Help to improved signal/background discrimination
 - Lot of nice features but not easy tool (integration, automation, cpu...)
 - Lively field: improvements in the future
- ATLAS and CMS experiments used this method in different analyses:
 - Search and discovery of the Higgs boson:
 - $H \rightarrow WW$: no gain observed
 - ttH(bb): clear gain obtained compared to previous analysis
 - H \rightarrow ZZ: successfully combined with other discriminating variables
 - Higgs spin/parity determination in H $\,\rightarrow\,$ ZZ
 - Measure of the HZZ vertex tensor structure
- Becoming a standard tool in HEP:
 - To be taken into account for future analysis perspective
 - Useful for precision measurements and for search with few free parameters

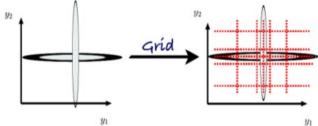
Backup


Transfer function

- Transfer function: •
 - showering/hadronisation effects
 - + experimental resolution/reconstruction
 - $P(x, \alpha)$ convoluted with a TF W(p vis ,p)
- Example: Likelihood fit on Δ (E parton E jet)
 - Can use another variable (ex: muon \rightarrow dependence in $1/p_{T}$)
- Imply particles not correlated •
- No dedicated TE for neutrinos •
 - Example: ex: transfer function on jet energy 0.08 0.04 Reality

•

NLO effects



- The Z produced is not at rest
 - induce a transverse boost of the system
 - Matrix Element doesn't match anymore
 - Correct for the boost

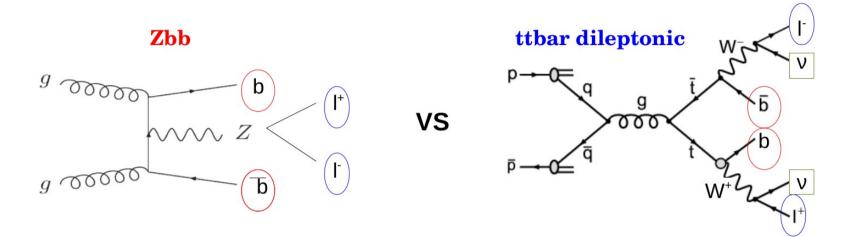
- Instead of having 2 particles in the final state $\rightarrow 3$
 - Matrix Element doesn't match anymore
 - > Apply another Matrix Element: signal+extra object
 - > Or recombine the extra jet+particle before applying MEM

Challenges

- Integral computation → **not trivial** ! Sharp functions:
 - Breit-Wigner
 - Transfer functions
- Integral convergence: need adaptive Monte Carlo Technique to pickspoint in interesting areas

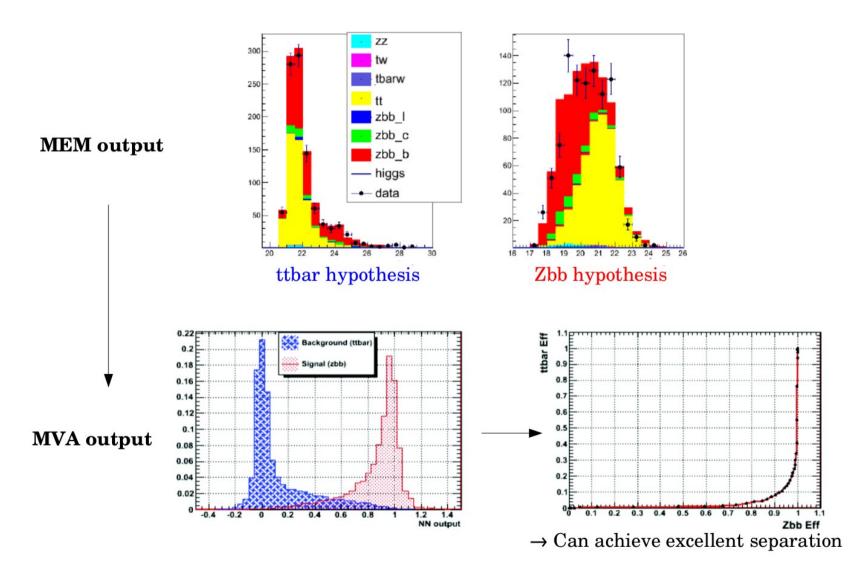
- This is model dependent \rightarrow ideal case: **automatic**, model independent, **fast**
- Real experiment: different configuration possible
 - need to handle combinatorics \rightarrow average between several weights (each parton-jet matching combination possible)
- Missing energy \rightarrow P(x, α) must be summed over the unobserved degrees of freedom.

Pros and cons of the method


- Maximize the amount of theoretical information for your discrimination
- ✓ No "training" as for most MVA methods
- ✓ Many potential applications (Tevatron: top mass measurement, single top discovery, CMS: Higgs search, spin correlation measurement, ...)
- X Depending on your model, the computation can be **CPU demanding**

	ZH	< 5 s		
Time to compute the weight of one event,	tt fully leptonic	10 s		x thousand
using MadWeight 5 [1]	Zbb	18 s		of events !
	tt semi-leptonic	41 s		
	ttH fully leptonic	1 min	J	

X ME at LO only (assignment between reconstructed jets and partons can be ambiguous beyond LO)


[1] P. Artoisenet, V. Lemaître, F. Maltoni, OM: JHEP 1012:068

Z+bb analysis: automatised MEM

- MEM used as cross check for standard analysis to discriminate Z+bb and ttbar dileptonic processes
 - very similar processes, same objects in final state
 - After cut on M(II) and E_{miss}^{T}
 - Use discrimination power to estimate the ttbar fraction in the data
- Use MadWeight to compute probability that an event α matches Z+bb/ttbar hypotheses
 - fully automatized procedure
 - All processes can be calculated in principle
 - transfer function for electrons, muons, bjets
 - correction for ISR jets

Z+bb analysis: automatised MEM

