Using the Hadronic Recoil Cross Section Measurement in Higgs Coupling Fits

Tim Barklow (SLAC) Oct 07, 2014 Mark Thomson's analysis of $\sigma(ZH)$ with $Z \rightarrow q\overline{q}$ uses two measurements to obtain the cross section: $\sigma(ZH) = \sigma(ZH) \cdot BR(visible) + \sigma(ZH) \cdot BR(invisible)$

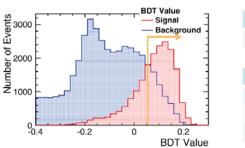
$$\sigma$$
(*ZH*)•*BR*(*visible*)

 σ (*ZH*)•*BR*(*invisible*)

Model Independent?

Combining visible + invisible analysis: wanted M.I.
 i.e. efficiency independent of Higgs decay mode

Decay mode	$arepsilon_{\mathscr{L}>0.65}^{\mathrm{vis}}$	$arepsilon_{\mathscr{L}>0.60}^{\mathrm{vis}}$	$\varepsilon^{ m vis} + \varepsilon^{ m invis}$	_	
$H \rightarrow invis.$	<0.1 %	22.0%	22.0 %		
${ m H} ightarrow { m q} \overline{ m q}/{ m gg}$	22.2 %	<0.1 %	22.2 %		
$\mathrm{H} \to \mathrm{W}\mathrm{W}^*$	21.6%	0.1~%	21.7~%	l r	
${ m H} ightarrow { m ZZ}^*$	20.2 %	1.0%	21.2 %		V
$\rm H {\rightarrow} \tau^+ \tau^-$	24.7 %	0.3 %	24.9 %		e
${ m H} ightarrow \gamma \gamma$	25.8%	<0.1%	25.8 %	_ [_]	
$H \to Z \gamma$	18.5 %	0.3 %	18.8~%		


 Very similar efficiencies

***** Preliminary results (7 variable BDT selection)

Channel		Efficiency	
$Z H \rightarrow qq$ invis.		20.7 %	
Backgrounds			
Channel	Effici	ency	Events
qqlv	<0.	1 %	900
qqll	<0.	1 %	4
qqvv	1.5	%	2414

Signal

*Assuming no invisible decays (1 sigma stat. error):

 $\Rightarrow \Delta \sigma_{\text{invis}} = \pm 0.57 \%$

(CLIC beam spectrum, 500 fb⁻¹@ 350 GeV, no polarisation)

20

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that $\sigma(ZH) \cdot BR(visible)$ is "almost model independent". By how much must we blow up $\Delta\sigma(ZH) \cdot BR(visible)$ to account for the fact that the efficiencies differ by as much as 7%?

★ Combining visible + invisible analysis: wanted M.I.

i.e. efficiency independent of Higgs decay mode

Decay mode	$arepsilon_{\mathscr{L}>0.65}^{\mathrm{vis}}$	$arepsilon_{\mathscr{L}>0.60}^{\mathrm{vis}}$	$\mathbf{\epsilon}^{\mathrm{vis}} + \mathbf{\epsilon}^{\mathrm{invis}}$	_
$H \rightarrow invis.$	<0.1%	22.0%	22.0 %	
$\mathrm{H} \rightarrow \mathrm{q} \overline{\mathrm{q}} / \mathrm{g} \mathrm{g}$	22.2%	<0.1%	22.2 %	
$\mathrm{H} ightarrow \mathrm{W} \mathrm{W}^*$	21.6%	0.1 %	21.7 %	
${ m H} { m \rightarrow} { m ZZ}^*$	20.2%	1.0%	21.2 %	 Very similar
${ m H} ightarrow au^+ au^-$	24.7 %	0.3 %	24.9 %	efficiencies
${ m H} ightarrow \gamma \gamma$	25.8%	<0.1%	25.8 %	
$\mathrm{H} \rightarrow \mathrm{Z} \gamma$	18.5 %	0.3 %	18.8 %	
$H \rightarrow WW^* \rightarrow q\overline{q}q\overline{q}$	21.3 %	<0.1 %	21.3 %	٦
$H \rightarrow WW^* \rightarrow q\overline{q} l\nu$	21.9%	<0.1 %	21.9 %	
${ m H} ightarrow { m W} { m W}^* ightarrow { m q} \overline{{ m q}} au { m v}$	22.1 %	<0.1%	22.1 %	Look at wide
$H \rightarrow WW^* \rightarrow l \nu l \nu$	24.8%	0.1%	25.0%	range of WW
$H \to WW^* \to l \nu \tau \nu$	20.5 %	0.8~%	22.1 %	
$H \to WW^* \to \text{tntn}$	16.4 %	2.5 %	18.9 %	topologies

Mark Thomson

Oshu City, September 2014

We have used an approach where we use all of our σ •*BR* measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(ZH)$ •*BR*(*visible*). It is then straightforward to propagate the σ •*BR* errors, as well as the systematic errors on the individual decay mode efficiencies for the $\sigma(ZH)$ •*BR*(*visible*) selection, to the error on $\sigma(ZH)$ •*BR*(*visible*). Let

- $\Psi \equiv \sigma(ZH) \bullet BR(visible)$
- Ω = Number of signal + background events in σ (*ZH*)•*BR*(*visible*) analysis
- B = Predicted number of background events in $\sigma(ZH)$ •BR(visible) analysis
- Ξ = Average efficiency for signal events to pass $\sigma(ZH) \cdot BR(visible)$ analysis L = luminosity

$$\Psi = \frac{\Omega - B}{L\Xi} = \frac{1}{\Xi} \sum_{i} \psi_i \xi_i = \sum_{i} \psi_i \quad \text{where}$$

 $\psi_i = \sigma(ZH) \cdot BR_i$

 $\xi_i = e$ fficiency for events from Higgs decay i to pass $\sigma(ZH) \cdot BR(visible)$ analysis

 $\Xi = \frac{\sum_{i} \psi_i \xi_i}{\sum_{i} \psi_i}$

$$\psi_i = \frac{\omega_i - \beta_i}{L\eta_i}$$

 ω_i = Number of signal + background events in $\sigma(ZH) \cdot BR_i$ analysis β_i = Predicted number of background events in $\sigma(ZH) \cdot BR_i$ analysis η_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis

 K_i = number of signal + background events common to had Z recoil and $\sigma \cdot BR_i$ analyses

E = number of signal + background events unique to had Z recoil analysis ε_i = number of signal + background events events unique to $\sigma \cdot BR_i$ analysis

$$\Omega = E + \sum_{i} K_{i} \qquad S \equiv \Omega - B \qquad T \equiv \frac{\sqrt{S + B}}{S}$$

$$\omega_{i} = K_{i} + \varepsilon_{i} \qquad S_{i} \equiv \omega_{i} - \beta_{i} \qquad \tau_{i} \equiv \frac{\sqrt{S_{i} + \beta_{i}}}{S_{i}}$$

$$\lambda_{i} \equiv \frac{K_{i}}{\omega_{i}} \qquad N \equiv L \sigma_{ZH} \qquad r_{i} \equiv BR_{i} \qquad \delta_{i} \equiv \xi_{i} - \Xi$$

$$\left(\frac{\Delta \Psi}{\Psi}\right)^{2} = T^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \left[\tau_{i}^{2} \left(\delta_{i}^{2} - 2\lambda_{i}\eta_{i}\delta_{i} \right) + \Delta \xi_{i}^{2} \right] \right\} \qquad \text{This is our result}$$

$$\sigma(ZH) \cdot BR(visible outlined on page)$$

This is our result for the error on $\sigma(ZH)$ •*BR*(*visible*) given the approach outlined on page 4

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = T^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \left[\tau_{i}^{2} \delta_{i}^{2} + \Delta \xi_{i}^{2} \right] \right\}$$

Assume $\sqrt{s} = 350$ GeV and L=500 fb⁻¹

$$N = L \sigma_{ZH} = 45383 \quad r_i = BR_i = (1 - BR_{BSM})BR_i(SM) \quad \tau_i(SM) = \frac{\Delta \sigma \bullet BR_i(SM)}{\sigma \bullet BR_i(SM)} = \frac{\sqrt{s_i + \beta_i}}{s_i}$$

From Mark Thomson's presentation at the ILD Meeting Oshu City Sep 8, 2014:

T =
$$\frac{\sqrt{S+B}}{S}$$
 = 0.014 Ω=S+B = 17738

 ξ_i (SM) are taken from the table on page 21 of Mark's presentation.

We assume that Mark's vis+invis efficiency values on page 21 cover all possible BSM decays since they cover all SM decays from completely invisible to fully hadronic multi-jet decays. Assuming no knowledge of the properties of the BSM decays we can then set

$$\xi_{BSM} = 0.5 * [\xi_{vis+invis}(max) + \xi_{vis+invis}(min)] = 0.5 * [0.258 + 0.188] = 0.22$$

$$\Delta \xi_{BSM} = 0.5 * [\xi_{vis+invis}(max) - \xi_{vis+invis}(min)] = .035$$

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = \mathrm{T}^{2}\left\{1 + \frac{N^{2}}{\Omega}\sum_{i}r_{i}^{2}\left[\tau_{i}^{2}\delta_{i}^{2} + \Delta\xi_{i}^{2}\right]\right\}$$

We next obtain the error $\tau_{BSM} = \frac{\Delta \sigma \cdot BR_{BSM}}{\sigma \cdot BR_{BSM}}$ from Michael Peskin's Higgs coupling fit program. We do not use the $\sum_{i} BR_{i} = 1$ constraint, and to begin with we only use the leptonic recoil σ_{ZH} measurement. This provides a model independent measurement of g_{BSM} . For $\sqrt{s} = 350$ GeV, L=500 fb⁻¹ Michael's program gives $\frac{\Delta g_{BSM}}{g_{BSM}} = 0.032$ which we multiply by two to get $\tau_{BSM} = \frac{\Delta \sigma \cdot BR_{BSM}}{\sigma \cdot BR_{BSM}} = 0.064$. We assume that $r_{BSM}(true) = 0$ and therefore set the measured $r_{BSM} = \tau_{BSM} = 0.064$. This gives a model independent $\frac{\Delta \Psi}{\Psi} = 0.014 * 1.27 = 0.018$.

We then add this new model indepdendent hadronic recoil σ_{ZH} measurement as input to Michael's program to obtain a new error $\tau_{BSM} = 0.041$. Setting $r_{BSM} = \tau_{BSM} = 0.041$ we then obtain a new model independent hadronic recoil σ_{ZH} error of $\frac{\Delta\Psi}{\Psi} = 0.014 * 1.12 = 0.016$.

Iterating again we arrive at $r_{BSM} = \tau_{BSM} = 0.039$ and $\frac{\Delta \Psi}{\Psi} = 0.014 * 1.11 = 0.016$. Further interations don't give any improvement. Our best model independent hadronic recoil cross section error is $\Delta \sigma_{ZH} = 0.016$.

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = \mathrm{T}^{2}\left\{1 + \frac{N^{2}}{\Omega}\sum_{i}r_{i}^{2}\left[\tau_{i}^{2}\delta_{i}^{2} + \Delta\xi_{i}^{2}\right]\right\}$$

We have shown that $\frac{1}{2} \frac{N^2}{\Omega} \sum_i r_i^2 \left[\tau_i^2 \delta_i^2 + \Delta \xi_i^2 \right] = 0.11$ for $\sqrt{s} = 350$ GeV, L=500 fb⁻¹.

How does this scale with luminosity?

 $\frac{N^2}{\Omega} \propto L \quad \tau_i^2 \propto L^{-1} \quad r_i^2 \text{ is independent of lumi except } r_{BSM}^2 = \tau_{BSM}^2 \propto L^{-1} \text{ .}$ If we assume $\Delta \xi_i = 0$ except $\Delta \xi_{BSM} = 0.035$ then $\frac{1}{2} \frac{N^2}{\Omega} \sum_i r_i^2 \left[\tau_i^2 \delta_i^2 + \Delta \xi_i^2 \right] = 0.11 \text{ independent of the luminosity at } \sqrt{s} = 350 \text{ GeV.}$

Caveats for hadronic recoil systematic error calculation :

These results assume that the true $r_{BSM} = BR(H \rightarrow BSM) = 0$. As the true r_{BSM} grows we need to keep the product $r_{BSM}\Delta\xi_{BSM}$ constant to maintain the same systematic error. For example

true r_{BSM} required $\Delta \xi_{BSM}$

.05	0.027
.10	0.014
.15	0.0091
.20	0.0068

These $\Delta \xi_{BSM}$ requirements may seem stringent for the larger values of true r_{BSM} . However as r_{BSM} grows we will have more *BSM* decays to analyze and the required improvement in Monte Carlo modelling of the *BSM* decays should follow.

1st Five Years of ILC Running

Model Independent Higgs Couplings $\Delta g_i/g_i$

	Scenario B	Scenario D-500		
\sqrt{s}	250 GeV	350 GeV		
L	360 fb^{-1}	470 fb^{-1}		
σ_{ZH} meas.	l^+l^- only	l^+l^- only	$l^+l^- + q\bar{q}$	
γγ	14.9 %	11.0	11.0 %	
<u>88</u>	5.2 %	3.3	3.1 %	
WW	$4.0 \ \%$	1.7	1.0 %	
ZZ	1.1 %	1.5	0.72 %	
$b\bar{b}$	4.4 %	2.4	2.0 %	
$ au^+ au^-$	4.7 %	3.0	2.8 %	
$c\bar{c}$	5.6 %	4.1	3.9 %	
$\Gamma_T(h)$	9.6 %	7.1	4.9 %	

Further improvement in the Higgs coupling measurements can be obtained using the constraint $\sum_{i} BR_{i} = 1$ as first noted by Michael Peskin. This constraint is model independent so long as the error in $BR(H \rightarrow BSM)$ is included in the fit. What error in $BR(H \rightarrow BSM)$ is required to produce an improvement in Higgs coupling measurements ?

1st Five Years of ILC Running

Model Independent Higgs Couplings $\Delta g_i/g_i$

\sqrt{s}	Scenario D-500 350 GeV					
L		470 fb^{-1}				
σ_{ZH} meas.	$l^+l^- + q\bar{q}$	$l^+l^- + q\bar{q} \; .$	$l^+l^- + q\bar{q}$	$l^+l^- + q\bar{q}$	$l^+l^- + q\bar{q}$	$l^+l^- + q\bar{q}$
$BR(H \rightarrow BSM)$	no meas.	<7.2%	<3.6%	<1.8%	<0.9%	<0.09%
(95% CL)						
γγ	11.0 %	10.9 %	10.9 %	10.9 %	10.9 %	10.9 %
88	3.1 %	3.0 %	2.9 %	2.9 %	2.9 %	2.9 %
WW	1.0 %	0.94 %	0.82 %	0.71 %	0.67 %	0.65 %
ZZ	0.72 %	0.67 %	0.60~%	0.53 %	0.51 %	0.50~%
$b\bar{b}$	2.0 %	1.8 %	1.6 %	1.5 %	1.4 %	1.4 %
$ au^+ au^-$	2.8 %	2.7 %	2.6 %	2.5 %	2.5 %	2.4 %
$c\bar{c}$	3.9 %	3.8 %	3.7 %	3.7 %	3.7 %	3.7 %
$\Gamma_T(h)$	4.9 %	4.4 %	3.6 %	2.8 %	2.5 %	2.3 %

215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992 : Is this a starting point for a complete $\sigma \bullet BR(H \rightarrow BSM)$ analysis?

Contents

1. Introduction and Overview	7
1.1. General Motivation to Search for Exotic Higgs Decays	8
1.2. Exotic Decay Modes of the 125 GeV Higgs Boson	13
1.3. Theoretical Models for Exotic Higgs Decays	19
1.3.1. SM + Scalar	19
1.3.2. 2HDM (+ Scalar)	23
1.3.3. SM + Fermion	35
1.3.4. SM + 2 Fermions	39
1.3.5. SM + Vector	41
1.3.6. MSSM	49
1.3.7. NMSSM with exotic Higgs decay to scalars	51
1.3.8. NMSSM with exotic Higgs decay to fermions	53
1.3.9. Little Higgs	56
1.3.10. Hidden Valleys	57
2. $\mathbf{h} \rightarrow \not\!$	62
2.1. Theoretical Motivation	62
2.2. Existing Collider Studies	63
2.3. Existing Experimental Searches and Limits	64
3. $h \rightarrow 4b$	64
3.1. Theoretical Motivation	65
3.2. Existing Collider Studies	66
3.3. Existing Experimental Searches and Limits	67
3.4. Proposals for New Searches at the LHC	69
4. $\mathbf{h} \rightarrow 2\mathbf{b}2\boldsymbol{\tau}$	70
4.1. Theoretical Motivation	70
4.2. Existing Collider Studies	70
4.3. Discussion of Future Searches at the LHC	71
5. $h \rightarrow 2b2\mu$	72

5.1. Theoretical Motivation	73
5.2. Existing Collider Studies and Experimental Searches	73
5.3. Proposals for New Searches at the LHC	74
6. h $ ightarrow 4 au, 2 au 2\mu$	79
6.1. Theoretical Motivation	79
6.2. Existing Collider Studies	82
6.3. Existing Experimental Searches and Limits	84
6.4. Proposals for New Searches at the LHC	90
7. $\mathbf{h} \rightarrow 4\mathbf{j}$	93
7.1. Theoretical Motivation	94
7.2. Existing Collider Studies	95
7.3. Existing Experimental Searches and Limits	96
8. h $ ightarrow 2\gamma 2 { m j}$	97
8.1. Theoretical Motivation	97
8.2. Existing Collider Studies	98
8.3. Existing Experimental Searches and Limits	100
8.4. Proposals for Future Searches	100
9. h $ ightarrow 4\gamma$	101
9.1. Theoretical Motivation	101
9.2. Existing Collider Studies	102
9.3. Existing Experimental Searches and Limits	105
9.4. Proposals for New Searches at the LHC	105
10. $\mathbf{h} \rightarrow \mathbf{Z}\mathbf{Z}_{\mathbf{D}}, \mathbf{Z}\mathbf{a} \rightarrow 4\boldsymbol{\ell}$	106
10.1. Theoretical Motivation	106
10.1.1. $h \to ZZ_D$	106
10.1.2. $h \rightarrow Za$	107
10.2. Existing Collider Studies	108
10.3. Existing Experimental Searches and Limits	108
10.4. Proposals for New Searches at the LHC	111

more Table of Contents from 215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992:

11. $\mathbf{h} ightarrow \mathbf{Z}_{\mathbf{D}} \mathbf{Z}_{\mathbf{D}} ightarrow 4\boldsymbol{\ell}$	112
11.1. Theoretical Motivation	112
11.2. Existing Collider Studies	113
11.3. Existing Experimental Searches and Limits	113
12. $\mathbf{h} ightarrow \boldsymbol{\gamma} + \mathbf{E}_{\mathbf{F}}$	118
12.1. Theoretical Motivations	118
12.2. Existing Collider Studies	119
12.3. Existing Experimental Searches and Limits	120
13. $\mathbf{h} ightarrow 2\gamma + E_{\mathbf{T}}$	122
13.1. Theoretical Motivation	123
13.1.1. Non-Resonant	123
13.1.2. Resonant	124
13.1.3. Cascade	125
13.2. Existing Experimental Searches and Limits	125
14. h \rightarrow 4 Isolated Leptons + $\not\!$	128
 14. h → 4 Isolated Leptons + ₺r 14.1. Theoretical Motivation 	128 129
14.1. Theoretical Motivation	129
14.1. Theoretical Motivation14.2. Existing Experimental Searches and Limits	129 130
14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. $h \rightarrow 2\ell + E_T$	129 130 136
 14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. h → 2ℓ + 𝔅_T 15.1. Theoretical Motivation 	129 130 136 136
 14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. h → 2ℓ + ₱_T 15.1. Theoretical Motivation 15.2. Existing Experimental Searches and Limits 	129 130 136 136 137
 14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. h → 2ℓ + 𝔅_T 15.1. Theoretical Motivation 15.2. Existing Experimental Searches and Limits 16. h → One Lepton-jet + X 	129 130 136 136 137 140
 14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. h → 2ℓ + F_T 15.1. Theoretical Motivation 15.2. Existing Experimental Searches and Limits 16. h → One Lepton-jet + X 16.1. Theoretical Motivation 	129 130 136 136 137 140 141
 14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. h → 2ℓ + ₱_T 15.1. Theoretical Motivation 15.2. Existing Experimental Searches and Limits 16. h → One Lepton-jet + X 16.1. Theoretical Motivation 16.2. Existing Collider Studies 	129 130 136 136 137 140 141 143
 14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. h → 2ℓ + β_T 15.1. Theoretical Motivation 15.2. Existing Experimental Searches and Limits 16. h → One Lepton-jet + X 16.1. Theoretical Motivation 16.2. Existing Collider Studies 16.3. Existing Experimental Searches and Limits 	129 130 136 136 137 140 141 143 144
 14.1. Theoretical Motivation 14.2. Existing Experimental Searches and Limits 15. h → 2ℓ + β_T 15.1. Theoretical Motivation 15.2. Existing Experimental Searches and Limits 16. h → One Lepton-jet + X 16.1. Theoretical Motivation 16.2. Existing Collider Studies 16.3. Existing Experimental Searches and Limits 16.4. Proposals for New Searches at the LHC 	129 130 136 136 137 140 141 143 144 145

17.3. Existing Experimental Searches and Limits	147
18. $\mathbf{h} ightarrow \mathbf{b} \mathbf{ar{b}} + \mathbf{E}_{\mathbf{T}}$	149
18.1. Theoretical Motivation	150
18.2. Existing Collider Studies	151
18.3. Existing Experimental Searches and Limits	151
19. $\mathbf{h} ightarrow oldsymbol{ au}^+ oldsymbol{ au}^- + oldsymbol{\mathbb{F}}_{\mathbf{T}}$	152
19.1. Theoretical Motivation	152
19.2. Existing Collider Studies	153
19.3. Existing Experimental Searches and Limits	154
20. Conclusions & Outlook	154
20.1. How to interpret the tables	155
20.2. Final States Without $\!$	156
20.2.1. $h \to aa \to \text{fermions}$	156
20.2.2. $h \rightarrow aa \rightarrow SM$ gauge bosons	158
20.2.3. $h \to Z_D Z_D, Z Z_D, Z a$	159
20.3. Final States with $\not\!$	162
20.3.1. Larger $\not\!\!\!E_T$, without resonances	164
20.3.2. Larger $\not\!\!\!E_T$, with resonances	166
20.3.3. Small $\not{\!\!E}_T$	170
20.3.4. Summary	171
20.4. Collimated objects in pairs	171
20.5. For further study	174
20.6. Summary of Suggestions	175
A. Decay Rate Computation for 2HDM+S Light Scalar and Pseudoscalar	179
A.1. Light Singlet Mass Above 1 GeV	180
A.2. Light Singlet Mass Below 1 GeV	183
B. Surveying Higgs phenomenology in the PQ-NMSSM	185
References	188

Summary

- The systematic error for the model dependence of Mark Thomson's hadronic recoil Higgstrahlung cross section measurement has been shown to be 11% of the statistical error assuming no knowledge of the properties of any BSM Higgs decays. This result is tailored for the context where BR(H->BSM) is small.
- If BR(H->BSM) is not small then analysis of BSM decays will improve the error on the efficiency for such events to pass the hadronic recoil analysis. It may be possile to maintain the 11 % systematic error using the improved efficiency error. Of course we have a different Higgs physics program if BR(H->BSM) is not small.

 A good understanding of σ • BR(H → BSM) is required to squeeze the last little bit of model independent Higgs coupling precision out of the data.

Backup Slides

 $\Psi \equiv \sigma(ZH) \cdot BR(visible)$

- Ω = Number of signal + background events in σ (*ZH*)•*BR*(*visible*) analysis
- B = Predicted number of background events in $\sigma(ZH)$ •BR(visible) analysis
- Ξ = Average efficiency for signal events to pass $\sigma(ZH)$ •BR(visible) analysis L = luminosity

$$\Psi = \frac{\Omega - B}{L\Xi} = \frac{1}{\Xi} \sum_{i} \psi_i \xi_i = \sum_{i} \psi_i \quad \text{where}$$

 $\psi_i = \sigma(ZH) \cdot BR_i$

 $\xi_i = e$ fficiency for events from Higgs decay i to pass $\sigma(ZH) \cdot BR(visible)$ analysis

$$\Xi = \frac{\sum_{i} \psi_i \xi_i}{\sum_{i} \psi_i}$$

$$\psi_i = \frac{\omega_i - \beta_i}{L\eta_i}$$

 ω_i = Number of signal + background events in $\sigma(ZH) \cdot BR_i$ analysis β_i = Predicted number of background events in $\sigma(ZH) \cdot BR_i$ analysis η_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis

K_i = number of signal + background events common to had Z recoil and $\sigma \cdot BR_i$ analyses

E = number of signal + background events unique to had Z recoil analysis ε_i = number of signal + background events events unique to $\sigma \cdot BR_i$ analysis

$$\Omega = E + \sum_{i} K_{i} \qquad S \equiv \Omega - B \qquad T \equiv \frac{\sqrt{S + B}}{S}$$
$$\omega_{i} = K_{i} + \varepsilon_{i} \qquad S_{i} \equiv \omega_{i} - \beta_{i} \qquad \tau_{i} \equiv \frac{\sqrt{S_{i} + \beta_{i}}}{S_{i}}$$

 $\lambda_{i} \equiv \frac{K_{i}}{\omega_{i}} \qquad \qquad N \equiv L \sigma_{ZH} \qquad r_{i} \equiv BR_{i} \qquad \delta_{i} \equiv \xi_{i} - \Xi$

$$(\Delta \Psi)^{2} = \left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega\Omega} + \left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi} + 2\frac{\partial \Psi}{\partial \Omega}\frac{\partial \Psi}{\partial \Xi} V_{\Omega\Xi}$$
$$\frac{\partial \Psi}{\partial \Omega} = \frac{1}{L\Xi} = \frac{\Psi}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-1} \qquad \qquad \frac{\partial \Psi}{\partial \Xi} = -\frac{\Omega - B}{L\Xi^{2}} = -\frac{\Psi}{\Xi}$$

$$V_{\Omega\Omega} = E + \sum_{i} K_{i} = \Omega$$
$$V_{\Xi\Xi} = \frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{(\xi_{i} - \Xi)^{2}}{(\eta_{i})^{2}} (\varepsilon_{i} + K_{i})$$
$$V_{\Omega\Xi} = \frac{1}{L \Psi} \sum_{i} \frac{\xi_{i} - \Xi}{\eta_{i}} K_{i}$$

$$\begin{split} \left(\frac{\Delta\Psi}{\Psi}\right)^2 &= \frac{1}{\Omega^2} \left(1 - \frac{B}{\Omega}\right)^{-2} V_{\alpha\alpha} + \frac{1}{\Xi^2} V_{\Xi\Xi} - \frac{2}{\Omega\Xi} \left(1 - \frac{B}{\Omega}\right)^{-1} V_{\alpha\Xi} \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2 \Xi^2 \Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (\varepsilon_i + K_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} K_i \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2 \Xi^2 \Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (L\eta_i \psi_i + \beta_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} \lambda_i (L\eta_i \psi_i + \beta_i) \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} \left[1 + \frac{L}{\Omega} \sum_i \frac{(\xi_i - \Xi)^2}{\eta_i} \psi_i \left(1 + \frac{\beta_i}{s_i}\right) - \frac{2L}{\Omega} \sum_i (\xi_i - \Xi) \psi_i \lambda_i \left(1 + \frac{\beta_i}{s_i}\right)\right] \\ &= \frac{S + B}{S^2} \left\{1 + \frac{L}{\Omega} \sum_i (\xi_i - \Xi) \psi_i \left(\frac{s_i + \beta_i}{s_i^2}\right) \left[(\xi_i - \Xi) L\psi_i - 2\lambda_i s_i\right]\right\} \end{split}$$

$$= \mathrm{T}^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2} \left[\delta_{i}^{2} - 2\lambda_{i} \eta_{i} \delta_{i} \right] \right\}$$

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(ZH) \cdot BR_i$ to calculate $\sigma(ZH) \cdot BR(visible) = \sum_i \sigma(ZH) \cdot BR_i$?

$$\Psi' = \sum_{i} \psi_{i} \qquad \qquad \psi_{i} = \frac{\omega_{i} - \beta_{i}}{L \xi_{i}}$$
$$(\Delta \Psi')^{2} = \sum_{i} \left(\frac{\partial \Psi'}{\partial \omega_{i}}\right)^{2} \omega_{i} , \qquad \frac{\partial \Psi'}{\partial \omega_{i}} = \frac{1}{L \eta'_{i}}$$
$$(\Delta \Psi')^{2} = \frac{1}{L^{2}} \sum_{i} = \frac{1}{L^{2}} \sum_{i} \frac{s_{i} + \beta_{i}}{\xi_{i}^{2}}$$

$$\left(\frac{\Delta \Psi'}{\Psi'}\right)^2 = \left(\sum_i \frac{\omega_i - \beta_i}{L\xi_i}\right)^{-2} \frac{1}{L^2} \sum_i \frac{s_i + \beta_i}{\xi_i^2}$$
$$= \frac{S + B}{S^2} \frac{L}{\Omega} \Xi^2 \sum_i \frac{\psi_i}{\xi_i} \left(1 + \frac{\beta_i}{s_i}\right)$$

Compare this now with our formula for $\left(\frac{\Delta\Psi}{\Psi}\right)^2$ for $\lambda_i = 1$:

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[\left(1 - \frac{\Xi}{\xi_{i}}\right)^{2} - 2\left(1 - \frac{\Xi}{\xi_{i}}\right) \right] \right\}$$
$$= \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[1 - \frac{2\Xi}{\xi_{i}} + \left(\frac{\Xi}{\xi_{i}}\right)^{2} - 2 + 2\frac{\Xi}{\xi_{i}} \right] \right\} = \left(\frac{\Delta\Psi'}{\Psi'}\right)^{2}$$