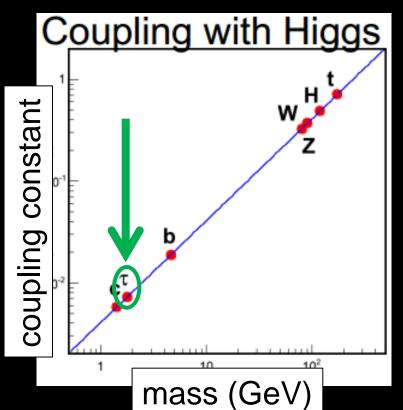
Measuring $BR(h \rightarrow \tau^+ \tau^-)$ at the ILC: a full simulation study

Shin-ichi Kawada Hiroshima University

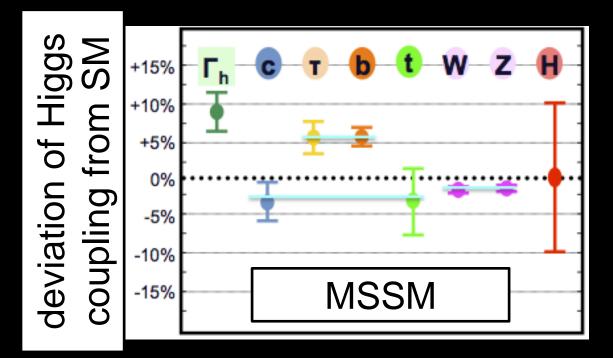
Collaborators: Tomohiko Tanabe (ICEPP, Univ. of Tokyo) Taikan Suehara (Kyushu Univ.) Keisuke Fujii (KEK) Tohru Takahashi (Hiroshima Univ.) Harumichi Yokoyama (Univ. of Tokyo)

Introduction


Higgs boson found

Next step: understanding details of new particle through the precise measurement

Branching Ratio (BR) $(h \rightarrow \tau^+ \tau^-)$

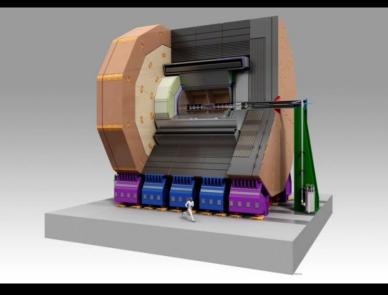

understanding basic propertyprobe for the new physics

O(%) accuracy is needed

Motivation for Precise Measurement

Any deviation in Higgs coupling and mass relation is an indication of new physics.

The small theoretical uncertainty in tau mass makes $BR(h \rightarrow \tau^+ \tau^-)$ an ideal probe for new physics.


Purpose of This Study

Estimating the precision of $BR(h \rightarrow \tau^+ \tau^-)$ at the ILC with ILD detector

We estimated the precision with full detector simulation (ILD) at the center-of-mass energy of 250 GeV and 500 GeV.

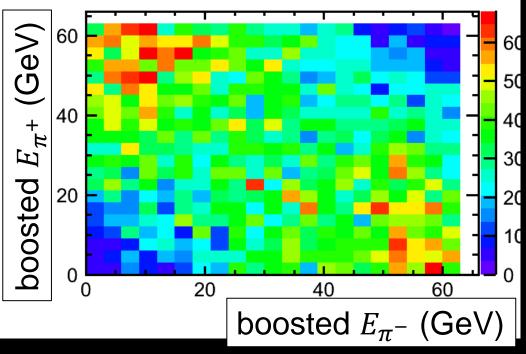
ECFA2013 Lol sample $(M_h = 120 \text{ GeV})$

LCWS2013 TDR sample $(M_h = 125 \text{ GeV})$ ILD detector model

Today's Talk: 250 GeV Analysis

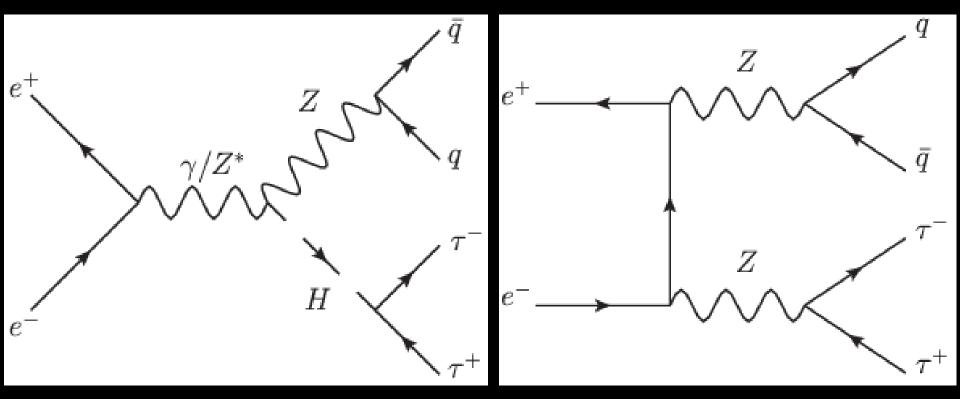
Higgs properties

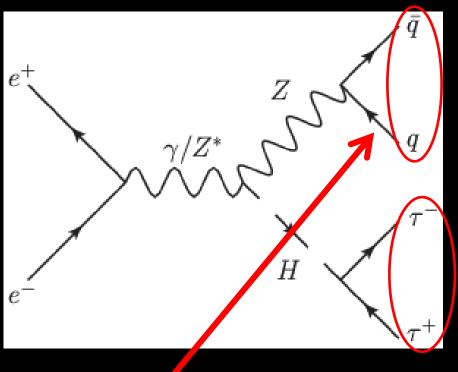

- M_h = 125 GeV
- BR($h \rightarrow \tau^+ \tau^-$) = 6.32% (LHC Higgs XS WG) Machine parameters
- Center-of-mass energy = 250 GeV
- Integrated luminosity = 250 fb⁻¹
- Beam polarization: $(e^-, e^+) = (-0.8, +0.3)$ Simulation Settings
- ILD full detector simulation (ILD_01_05)
- TDR sample (higgs_ffh, 2f, 4f, 1f_3f, aa_2f) + new $h \rightarrow \tau^+ \tau^-$ sample (next page)


Tau Polarization

Tau polarization in $h \to \tau^+ \tau^-$ decay of TDR sample was not treated properly. $(h \to \tau^+(s \uparrow)\tau^-(s \downarrow) \text{ or } \tau^+(s \downarrow)\tau^-(s \uparrow))$

developed new event generator which fixed this problem (by H. Yokoyama)

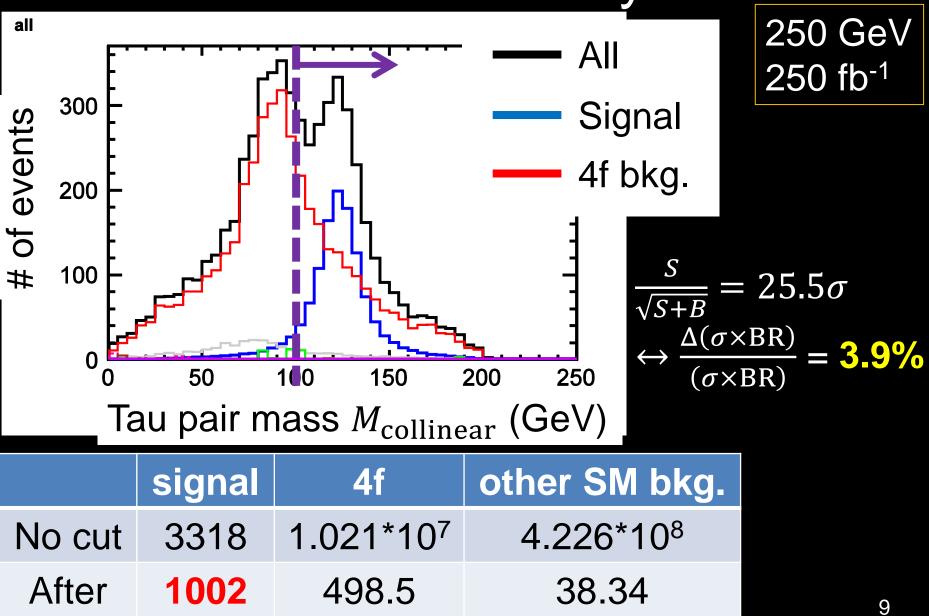

We generated new samples and analyzed.



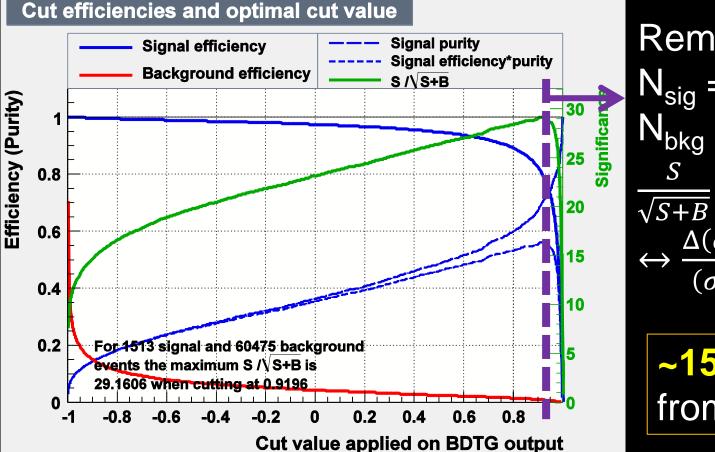
Signal and Background

SignalMain background $e^+e^- \rightarrow Zh \rightarrow (q\bar{q})(\tau^+\tau^-)$ $e^+e^- \rightarrow ZZ \rightarrow (q\bar{q})(\tau^+\tau^-)$

Event Reconstruction


(2) Z reconstruction Durham algorithm into 2-jets

(1) Tau reconstruction- Tau jet finder


clustering based on tau mass optimized in the presence of jet background

- Collinear approximation tau pair mass reconstruction

Cut-based Analysis

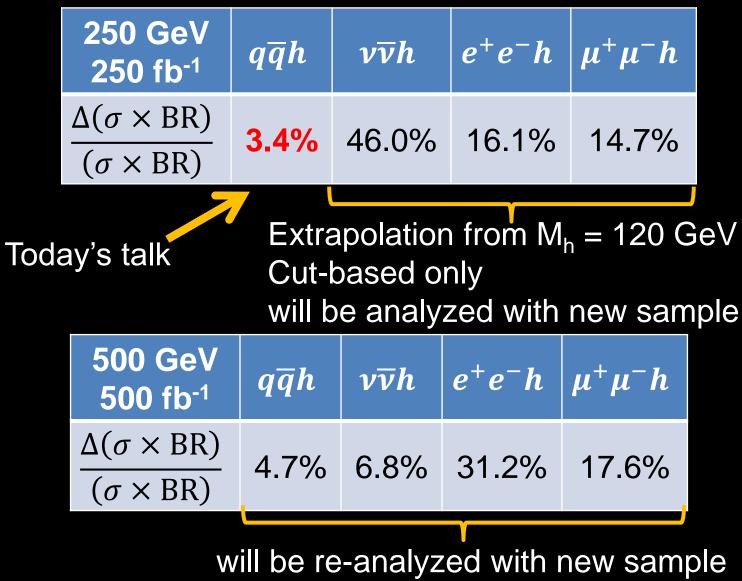
Analysis Using TMVA We used Boosted Decision Tree technique. (BDT and BDTG, training parameters are optimized.)

Remained events $N_{sig} = 1202$ $N_{bkg} = 497.5$ $\frac{S}{\sqrt{S+B}} = 29.1\sigma$ $\leftrightarrow \frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} = 3.4\%$

~15% improved from cut-based!

LCWS2014 @ Belgrade, Serbia (2014/Oct./7)

Comparison with $M_h = 120$ GeV Results


250 GeV 250 fb ⁻¹	Extrapolation from M _h = 120 GeV	M _h = 125 GeV
$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	4.2% $q\bar{q}h + \ell^+\ell^-h$ (ref: LC-REP-2013-001)	3.4% <i>qqh</i> only
Conditions	 cut-based only tau finder was not so optimized 	 using multivariate technique optimized tau finder

Summary

- We prepared new signal sample which including proper tau polarization, and analyzed 250 GeV $q\bar{q}h$ mode.
- Boosted Decision Tree technique is very useful, and we can archive 3% level precision of ($\sigma \times BR$) even only using 250 GeV $q\bar{q}h$.
- Plan: finalize this analysis for all modes at 250 GeV and 500 GeV

BACKUPS

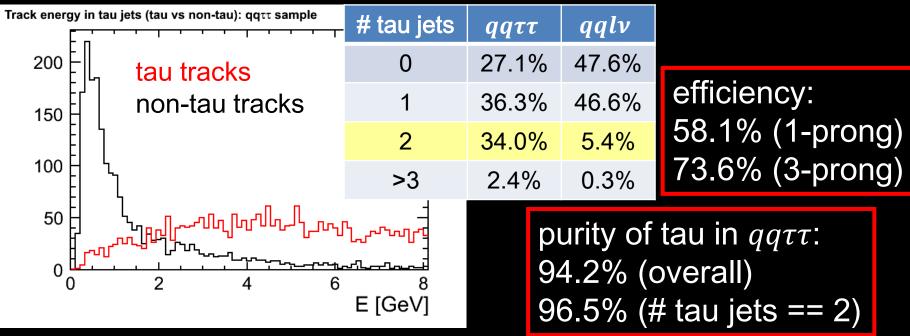
Current Numbers

LCWS2014 @ Belgrade, Serbia (2014/Oct./7)

by T. Suehara

TaJet Finder (1)

High-purity tau tagging in presence of jet background


- 1. Order charged tracks by largest energy
- 2. Select the first track
- 3. Combine neighboring particles -> "Tau Jet"
 - Combined mass < 2 GeV && cos0 w.r.t. jet axis > 0.99
- 4. Tau selection (tuned for rejecting qq background)
 - 1. Tau Jet energy > 3 GeV
 - 2. Veto >=3 prong + neutrals (> 1 GeV)
 - 3. Cone energy ($E_{cone} < 0.1E_{taujet}$) with $cos\theta_{cone} = 0.95$

ZZ -> qqττ 250 GeV, 13600 taus	1-prong		3-prong wo/ neutral		3-prong w/ neutral	
	tau	non-tau	tau	non-tau	tau	non-tau
No cut	10326	43286	716	1616	777	4280
E _{taujet} > 3	8679	7145	708	1304	742	4244
E _{cone} < 0.5E _{taujet}	7170	1009	621	181	681	1813
E _{cone} < 0.2E _{taujet}	6455	446	567	64	616	1020
E _{cone} < 0.1E _{taujet}	6001	254	527	30	570	620 ₁₅

by T. Suehara

TaJet Finder (2)

- 5. Jet charge recovery (for better efficiency)
 - Tracks with energy < 2 GeV are detached one by one until tau jet has 1 or 3 tracks and sum charge is +1 or -1
 - Jet is rejected if above condition cannot be satisfied after detaching all < 2 GeV tracks
- 6. Return to 2. (previous page) with the remaining tracks
 - Stop after all E > 2 GeV tracks have been processed

LCWS2014 @ Belgrade, Serbia (2014/Oct./7)

Collinear Approximation

method of reconstructing tau pair mass (M_H)

Assumptions :

- visible τ decay products and ν s are collinear
- contribution of missing momentum comes only from vs of τ decay

Collinear Approximation

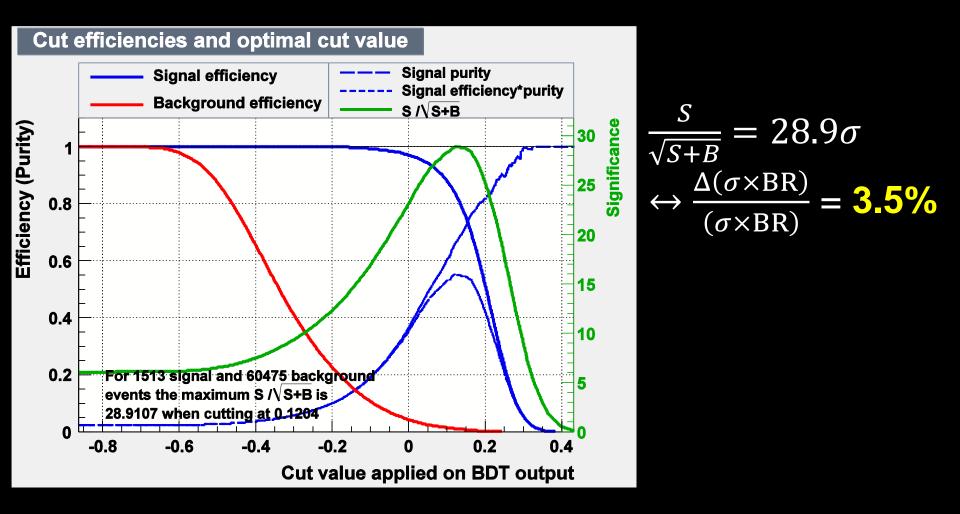
$$\tau_{1\text{vis}} \equiv (E_{\text{vis}1}, \boldsymbol{p}_{\text{vis}1}), \tau_{2\text{vis}} \equiv (E_{\text{vis}2}, \boldsymbol{p}_{\text{vis}2}) \longleftrightarrow_{\text{visible product(s) from tau}} \\ \tau_{1\text{inv}} = \boldsymbol{a}(|\boldsymbol{p}_{\text{vis}1}|, \boldsymbol{p}_{\text{vis}1}), \tau_{2\text{inv}} = \boldsymbol{b}(|\boldsymbol{p}_{\text{vis}2}|, \boldsymbol{p}_{\text{vis}2}) \longleftrightarrow_{\text{vis}2} \\ \boldsymbol{a} = \frac{p_{\text{mis}y} p_{\tau 2\text{vis}x} - p_{\text{mis}x} p_{\tau 2\text{vis}y}}{p_{\tau 1y} p_{\tau 2x} - p_{\tau 1x} p_{\tau 2y}} \\ \boldsymbol{b} = \frac{p_{\text{mis}y} p_{\tau 1\text{vis}x} - p_{\text{mis}x} p_{\tau 1\text{vis}y}}{p_{\tau 1x} p_{\tau 2y} - p_{\tau 2x} p_{\tau 1y}}$$

Cut-based Analysis

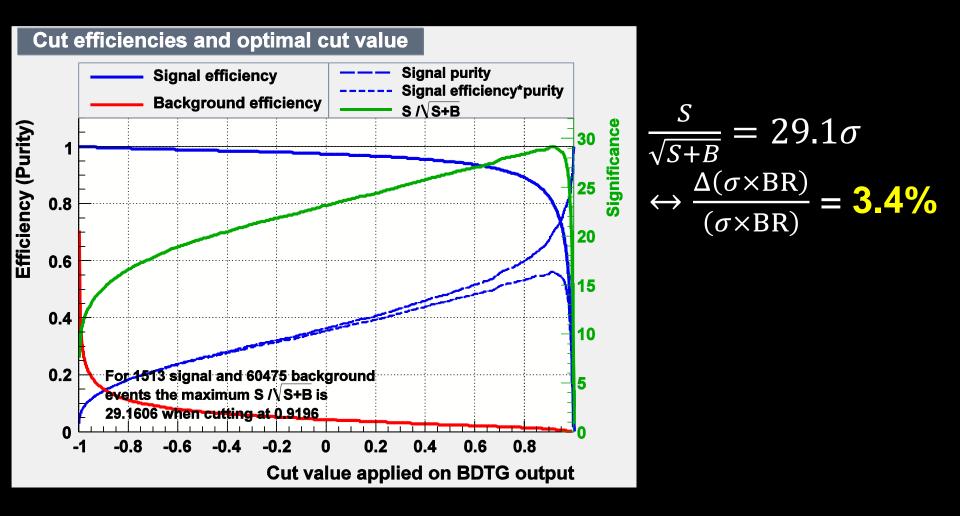
```
Cut 0 (pre-cuts): # of q jets = 2, # of \tau^+(\tau^-) = 1,
                           # of tracks >= 9, M_{col} > 0, E_{col} > 0
Cut 0.5 (basic cuts): 90 < E_{vis} < 285, 75 < M_{vis} < 275, P_t > 40,
                                thrust < 0.97, |\cos \theta_{\rm miss}| < 0.99
Cut 1: M_{\rm vis} < 240
Cut 2: |\cos \theta_{\text{miss}}| < 0.98
                                                                    pre-cuts:
Cut 3: E_Z(E_{aa}) < 125
                                                                    require signal topology
Cut 4: M_Z(M_{aa}) > 80
                                                                    basic cuts:
Cut 5: E_{\tau\tau} < 130
                                                                    suppress trivial bkg. events
Cut 6: <u>M<sub>77</sub> < 115</u>
Cut 7: \cos \theta_{\tau \tau} < -0.54
Cut 8: E_{col} < 210
Cut 9: M_{col} > 100
Cut 10: \log_{10} |d_0 \operatorname{sig}(\tau^+)| + \log_{10} |d_0 \operatorname{sig}(\tau^-)| > -0.2
Cut 11: \log_{10} |z_0 \operatorname{sig}(\tau^+)| + \log_{10} |z_0 \operatorname{sig}(\tau^-)| > -0.4
Cut 12: M_{\rm recoil} > 115
```

Cut Table (AeX = A^*10^X)

表1 250 GeV $q\overline{q}h$ Cut-based 解析の cut table。eX は $\times 10^X$ を表す。								
	$q\overline{q}h$	$q\overline{q}h$	$ u \overline{ u} h$	2f	$4\mathrm{f}$	1f_3f	aa_2f	sig.
	$h \to \tau \tau$	$h\not\to\tau\tau$	$\ell\ell h$					
None	3318	4.920e4	2.712e4	$2.863 e^{-7}$	1.021 e7	2.305e8	1.634e8	0.160
pre-sel	1529	671.4	3847	5.877 e4	2.522e5	5.195e4	1.617e5	2.10
basic	1513	646.9	3679	1.865e4	2.314e5	2434	79.40	2.98
$E_{\rm vis}$	1493	478.8	1879	5004	1.642e5	1531	69.41	3.57
$\theta_{\rm miss}$	1479	465.1	1827	4294	1.586e5	1069	41.97	3.61
E_Z	1421	233.2	776.9	2546	1.403e5	873.8	40.97	3.72
M_Z	1282	203.4	668.8	200.3	$1.611\mathrm{e}4$	102.7	4.997	9.41
$E_{\tau\tau}$	1279	203.3	668.3	179.1	1.571 e4	101.7	4.997	9.50
$M_{\tau\tau}$	1274	203.1	664.5	179.1	1.559e4	101.6	4.997	9.49
$\theta_{ au au}$	1262	35.73	335.0	53.17	5291	38.09	4.997	15.1
$E_{\rm col}$	1220	22.58	306.3	44.05	4134	32.29	4.997	16.1
$M_{\rm col}$	1106	11.52	78.79	17.26	1564	4.000	0	21.0
d_0 sig	1065	7.422	49.13	17.26	1132	4.000	0	22.3
z_0 sig	1038	4.576	35.15	17.26	915.9	3.100	0	23.1
$M_{\rm recoil}$	1002	3.553	27.52	4.818	498.5	2.450	0	25.5


TMVA Analysis (1)

- Use samples which already applied precuts and basic cuts
- Additional cuts are also applied to suppress trivial process: $60 < E_Z < 180$, $35 < M_Z < 160$, $E_{\tau\tau} < 140$, $M_{\tau\tau} < 125$, $\cos \theta_{\tau\tau} < -0.4$
- Use BDT and BDTG method


TMVA Analysis (2)

- BDT parameters:
 - MaxDepth = 4, NTrees = 900
- BDTG parameters:
 - Shrinkage = 0.30, MaxDepth = 6, NTrees = 1200

BDT Result

BDTG Result

