DEPFET Based Ultra-light All-silicon Modules for Vertexing at a Future Linear Collider

- Summary of the latest achievements at Belle II
- > Integration and low-mass modules

Ladislav Andricek, MPG Halbleiterlabor, München

For the DEPFET Collaboration

Cornerstone specs for a DEPFET system @ILC

- :- small pixels (~20µm) for excellent single point resolution (~3µm)
- :- minimal material
 - → thin sensors with large S/N; minimize support, services, and cooling material
- :- the DEPFET runs in a rolling shutter mode (read-out during the bunch train)
 - → due to background, take as many frames as possible to minimize occupancy!
 - \rightarrow our goal is ~1/50µs frame rate, 1/50ns row rate (innermost layer)
- :- radiation tolerant up to ~1Mrad and ~ 10^{12} n_{eq} /cm² for 10 years operation (e⁻ in the MeV range)

The ILD VXD ←→ Belle II PXD

	ILD LOI 5-layer layout	Belle II	
Radii	15, 26, 38, 49, 60	14, 22	mm
Sensitive length	123 (L1), 250 (L2-L5)	90 (L1), 122 (L2)	mm
Sensitive width	13 (L1), 22 (L2-L5)	12.5 (L1-L2)	mm
Number of ladders	8, 8, 12, 16, 20	8, 12	
Pixel size	20x20 (L1-L5)	55x50 & 60X50 (L1), 70x50 & 85x50 (L2)	μm ²
r/o time per row	50 (L1), 250 (L2-L5)	100	ns
Number of pixels	800	8	Mpix

Belle II PXD ladder: (almost) prototypes for L1 and L2 of ILD LOI layout!!

DEPFET all-silicon module

DCDB (Drain Current Digitizer) Analog front-end

Amplification and digitization of DEPFET signals.

- 256 input channels
- 8-bit ADC per channel
- 92 ns sampling time
- new version w/ 50ns sampling time under test
- UMC 180 nm
- Rad hard design

SwitcherB - Row Control

AMS/IBM HVCMOS 180 nm

- Size 3.6 × 1.5 mm²
- Gate and Clear signal
- 32x2 channels
- Fast HV ramp for Clear
- Rad. Hard proved (36 Mrad)

DHP (Data Handling Processor) First data compression

TSMC 65 nm

- Size 4.0 × 3.2 mm²
- Stores raw data and pedestals
- Common mode and pedestal correction
- Data reduction (zero suppression)
- Timing and trigger control
- Rad. Hard proved (100 Mrad)

Key to low mass vertex detectors

→ highest integration!

conductive layers

(Al/Al/Cu)

Sensor and r/o electronics: Beam tests with the full system

PXD6 Belle II design

- \triangleright Thin (**50** µm) sensor 32x64 pixels
- Pitch 50x75 µm²
- SwitcherB and DCDB at full speed
- DCDB readout at 320 MHz → 100 ns row time
- ⇒ 99% Efficiency
- > S/N for MIPs: 20-40 depending on gate length

Belle II system test in the DESY Beam

Belle II system test in the DESY Beam

Towards a real ladder

Transition from test systems to integrated modules

- » PCB for the various matrices "hybrids"
- » first bump bonded chip on PXD6 prototype matrices
 - → 2 metal layers, not the final geometry, simple 3rd metal
 - → need still support PCB for I/O
 - → not perforated balcony
- » Belle-II PXD Module (two modules form a ladder)

 - → MCM: 4 DCD, 4 DHP, 6 Switchers → ~3000 bonds/module
 - → Cu as UBM, bumps partly on thinned perforated frame
 - → passive components soldered to substrate
 - → I/O and power over Kapton cable

Test vehicle E-MCM

Extensive test program

- » Interconnect technology
- » Powering, control, DAQ
- » Signal integrity, timing ...
- » ..

Lessons learned are being applied to final module layout

DEPFET at the ILC: the challenges

:- small pixels (~20µm) for excellent single point resolution (~3µm)

:- speed: the DEPFET runs in a rolling shutter mode (read-out during the bunch train)

→ ~1/100ns row rate state of the art (at Belle II)

→ our goal is ~1/50ns row rate

→ under investigation with new DCDB pipeline

→ Variable pixel size in z would help to reduce #pixels per column

:- minimal material down to very small angles

→ thinner sensors with large S/N

→ minimize support, services, and cooling material

→ low mass cooling

→ forward region??

'Physical limitations to the spatial resolution of solid-state detectors' arXiv:1404.4535

Reducing material in the barrel region

	Belle II	ILC
Frame thickness	525 μm	400μm
Sensitive layer	75 μm	50μm
Switcher thickness	500µm	75µm
Cu layer	only on periphery	only on periphery
Total	0.21 %X0	0.13 %X0

> less material with small modifications/improvements of module technology within reach

Thermal management and material

- » Belle II
 - » 9W/half ladder, 8W at EOS
 - » Active (CO₂) cooling at EOS, cooling block
- » Power distribution at ILC very similar
- » Power pulsing \rightarrow 1/200??, 1/100??, 1/50??
- » Air cooling mandatory (and most likely possible)
- » at EOS still high power density, active cooling might be needed
 - → How about silicon integrated cooling channels there ????

Cooling flange for Belle II

Integrated micro-channels

A spin-off of SOI approach: thinned all-silicon module with integ. cooling

- :- idea: integrate channels into handle wafer beneath the ASICs
- :- channels etched before wafer bonding -> cavity SOI (C-SOI)
- :- full processing on C-SOI, thinning of sensitive area
- :- micro-channels accessible only after cutting (laser)

feasibility study

feasibility study

PEEK tubes with 360 μm OD

Water cooling

Very effective cooling! "Large" ∆T expected and confirmed by simulation (just water!!)

Simulated temperature profile

Simulated velocity profile (water)

 \rightarrow non-optimal corners, new layout currently under study

temperature vs. time

Extremely encouraging first results!! To be continued in the framework of AIDA H2020

Stepping forward – all-silicon petal

LC Detector concepts require pixelated forward discs

» SiD : vertex detector end-cap

» ILD : forward tracking discs

→ Adapt all-silicon ladder to the forward region: "all-silicon" DEPFET pixel petal

Concept

- Thin sensitive region: R= 3.9 to 13.4 cm
- » Radially varying pixel size
- » r/o at the outer edge with bump bonded ASICs
- » Steering ASICs on frame
- Technology as for the barrel all-silicon ladder
 - → SOI wafer, etched back to SiO2
 - → if needed add narrow radial support bars

all-silicon petal

Total silicon area:

"sensitive" unsupported thin silicon (here 75µm):

Material (500 μm support, 75 μm sensitive):

 \rightarrow 400µm support + 50 µm sensitive:

 \sim 34 cm²

~21 cm²

~0.18% X0

~0.14% X0

Summary

- » The DEPFET Belle II all-silicon module is to a large extent a prototype for a ILC vertex detector
 - → Read-out and steering ASICs flip-chipped to the sensor silicon
 - → average material budget 0.21 %X₀ including all support material
- » Further reduction of the material budget possible \rightarrow 0.13 % X_0
 - → Reduce support silicon by ~125 μm.
 - → Thinner steering ASICs on the "balcony" (~75μm)
- » New exclusively ILC related activities are:
 - **→ Micro-channel cooling at the end-of-stave**
 - **→** feasibility study for all-silicon DEPFET forward discs

Requirement II: higher read-out speed

- >> 100ns per r/o \rightarrow 2048 rows per half-ladder, 2-fold r/o \rightarrow ~1/100 μ s frame rate state of the art
- possible improvements (with current f/e electronics and ADC)
 - → Sensor technology: a third metal layer in the sensitive area is within reach
 - → 4-fold read-out with small pixels → 1/50µs frame rate

→ **optimization** of cluster size for shallow(er) tracks

- → Introduce three regions in z with ~25μm/50μm/100μm pixel pitch in z (similar to Belle II)
- \rightarrow #rows reduced by factor ~2 \rightarrow 1/25 μ s frame rate possible

rφ-resolution varies between 2.3 - 3.5 μm

z-resolution is similar for $\Theta < 45^{\circ}$, degradation for shallower tracks

- > state of the art is factor 2 too low for ILC vertexing
 - improve technology
 - → optimize pixel size, improve technology

Requirement I: better single point resolution

→ Required single point resolution with small DEPFETs achievable

The end of stave (EOS)

flying needle tester

Vertexing at a LC

- From the pixel sensor point of view there is no such thing like "the" linear collider!
 - → ILC with various CM energies
 - → and CLIC with up to 3TeV
- Beam structures of ILC and CLIC are very different

- > The DEPFET approach takes advantage of the beam structure at the ILC
 - → record and transmit 15-20 frames per train in "rolling shutter" mode
 - → Stand-by during pause to reduce over-all power consumption
- ▷ CLIC would (probably) require time stamping of frames read during train

DEPFETs in a nutshell

- fully depleted sensitive volume
 - fast signal rise time (~ns), small cluster size
- In-house fabrication at MPG HLL
 - Wafer scale devices possible
 - Thinning to (almost) any desired thickness
 - no stitching, 100% fill factor
- no charge transfer needed
 - faster read out
 - better radiation tolerance
- Charge collection in "off" state, read out on demand
 - potentially low power device
- internal amplification
 - charge-to-current conversion
 - r/o cap. independent of sensor thickness
 - Good S/N for thin devices $\rightarrow \sim 40$ nA/ μ m for mip

d) anisotropic deep etching opens "windows" in handle wafer

First test results – Gate, Clear and signal transmission

Next step is to mount a small DEPFET Matrix and test performance on the Bench and in a test beam

E-MCM – everything but the DEPFET

