Long L* option for ILC Final Focus System

Design and **Tunability** of a short **Traditional** FFS scheme with $L^* = 8$ m

Fabien Plassard, 1,3 Rogelio Tomas Garcia, Andrea Latina, Hector Garcia Morales 2,3

Polytechnic Institute of Applied Sciences (IPSA), France ¹
Royal Holloway University of London, UK ²

CERN, Switzerland ³

7th October 2014

JIIBC14 Vinča Institute of Nuclear Sciences, Belgrade, Serbia

INTERNATIONAL WORKSHOP ON FUTURE LINEAR COLLIDERS

LCWS14 ILC FFS slide 1/21

OUTLINE

- 1 ILC Final Focus System
 - Review of the traditional design
 - Long L^* option for ILC Final Focus
- Design optimization and results
 - Traditional lattice design and optimization for $L^* = 8 \text{ m}$
 - Comparison for shorter L^* design
- Tuning simulation using extra sextupoles
 - Tuning set up
 - Alignment procedure (A. Latina algorithm)
 - Steps before tuning the FFS
 - Tuning preliminary results
- 4 Summary and conclusions

Review of the FFS chromaticity correction

Traditional design

Chromaticity corrected in dedicated section but not in the Final Telescope

Local Chromaticity correction

Chromaticity corrected at the Final Doublet

Review of the FFS chromaticity correction

Key parameter	Symbol	Value	Unit
Beam energy	E_{beam}	250	GeV
FFS length	l	500	m
Last Drift	L*	8	m
Normalized emittances	$\epsilon_{Nx}/\epsilon_{Ny}$	10 / 0.035	μm
IP β-functions	β_x^* / β_y^*	11 / 0.48	mm
Nominal beam sizes	σ_x^* / σ_y^*	474 / 5.87	nm
RMS bunch length	σ_z	300	μm
RMS energy spread	σ_{δ}	0.125	%
Bunch population	N+/-	2×10^{10}	
Numbers of bunches	n_b	1312	
Collision rate	f_{rep}	5	Hz
Nominal total luminosity	L_T	1.5×10^{34}	$cm^{-2}s^{-1}$
Fraction of luminosity in top 1%	$L_{1\%}$ / L_{T}	58.3	%

- Traditional scheme offers **separated functions** and straightforward cancellation of geometrical aberrations.
- Chromaticity $\xi \sim \frac{L^* + L_Q/2}{\beta^*}$ \Longrightarrow small β^* and long L^* causes high chromatic aberrations
- **Not locally corrected** □ unavoidable lack of cancellation of high order chromatic aberration.

Long L^* option for ILC Final Focus

ILC Baseline Design

- Small L^* using SC magnet
- Less chromaticity generated at the IP
- Large magnet vibration

Long L^* option

- Magnets outside of the detector on a stable ground ===> small magnet vibration
- Same magnet for all detectors

Problem:

Luminosity and tuning of the FFS for the long L^* option

ground

ILC FFS LCWS14 slide 5/21

Traditional lattice design and optimization for $L^* = 8 \text{ m}$

LCWS14 ILC FFS

slide 6/21

Traditional lattice design and optimization for $L^* = 8 \text{ m}$

- 2 additional pairs of sextupoles located in each chromatic correction section CCX and CCY
- high **β-function** and high **dispersion** D_x region
- -I transformation between pairs of sextupoles

Nonlinear optimization (w/o SR)

Original lattice:

 σ_x (10) = 825.35 nm 74% of deviation from ILC design σ_x

Extra sextupoles lattice:

 σ_x (10) = **498.1** nm

5% of deviation from ILC design σ_x

Original lattice:

 σ_y (10) = 7.96 nm 36% of deviation from ILC design σ_y

Extra sextupoles lattice:

 σ_{v} (10) = **6.46 nm**

10% of deviation from ILC design σ_y

Calculations made using MAPCLASS code

LCWS14 ILC FFS slide 8/21

Luminosity and momentum bandwidth (with SR)

Original lattice:

 $L_{peak} = 0.652 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Influence of synchrotron radiation: 1.2%

Original lattice:

 $L_T = 0.874 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

42% of luminosity loss from $1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Influence of synchrotron radiation: 1.8%

Extra sextupoles lattice:

 $L_{peak} = 0.84 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Influence of synchrotron radiation: 5%

Larger momentum bandwidth

Extra sextupoles lattice:

 $L_T = 1.36 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

10% of luminosity loss from $1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Influence of synchrotron radiation: 5.5%

Larger momentum bandwidth

Calculations made using PLACET and Guinea-Pig

Comparison for shorter L^* design

What is the impact of the L^* on the traditional design performances?

(Optimization for $L^* = 6 \text{ m}$)

Shorter L^* design: nonlinear optimization (w/o SR)

lattice	σ_{χ} [nm]	σ_y [nm]
Original design $L^*=8m$	825.35	7.96
New design L*=8m	498.1	6.46
Original design L*=6m	489.67	6.54
New design L*=6m	492.48	6.08

- The extra sextupoles design for $L^*=6$ m reduces only the vertical beam size σ_v
- The shorter L^* generates less chromatic aberrations at the FD

LCWS14 ILC FFS slide II/2I

Shorter L^* design: momentum bandwidth (with SR)

- Original design $L^* = 6 \text{ m}$: $L_T = 1.38 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Extra sextupoles design $L^* = 6 \text{ m}$: $L_T = 1.42 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- **Larger momentum acceptance** for both design with $L^* = 6$ m
- **Large impact of** L^* on the traditional scheme performance

LCWS14

Tuning simulation

- The performance of a linear collider drops when we consider **magnet misalignments**
- Under realistic conditions the luminosity is reduced and an **alignment procedure** is mandatory
- Tuning process brings the system to its design performance using beam-based alignment techniques and beam parameters optimization algorithm

Tuning set up (\neq ILC errors parameters)

- Short **Traditional** lattice using **extra sextupoles** and $L^* = 8$ m
- Take into account nonlinearities and synchrotron radiation
- 110 randomly misaligned machines (seeds)
- Initial misalignment : $10 \mu m$ RMS in transverse plane (x, y)
- Elements misaligned : Quadrupoles, Sextupoles , BPMs
- Dipole correctors : Corrector + Quad + BPM
- BPM resolution: 10 nm
- Tracking and luminosity measurement provided by PLACET and Guinea-Pig
- Luminosity goal : $L_T = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Alignment procedure (A. Latina algorithm)

Beam Based Alignment (orbit correction): Sextupoles switched OFF

- **1-1 correction** $\begin{pmatrix} b_x \\ b_y \end{pmatrix} = \begin{pmatrix} R_{xx} & 0 \\ 0 & R_{yy} \end{pmatrix} \begin{pmatrix} \theta_x \\ \theta_y \end{pmatrix}$ Minimize BPMs reading
- **DFS** $\left(\omega_1(\eta \eta_0)\right) = \begin{pmatrix} R \\ \omega_1 D \\ \beta I \end{pmatrix} \begin{pmatrix} \theta_x \\ \theta_y \end{pmatrix}$
 - correct orbit and dispersion simultaneously **Multipole-shunting (1)**

Sextupoles Powered individually

Beam parameters optimization using orthogonal knobs

Multipole Knobs 2

Beam parameters optimization using orthogonal knobs

Beam Based Alignment Sextupoles switched ON

Multipole-shunting (2)

ILC FFS LCWS14 slide 14/21

Steps before tuning

- Response matrices calculation : *R*, *D*
- Weigthing factors β , ω_1 , ω_2
- Knobs computation

- 16 sextupoles in the lattice
- 32 sextupole position in x and y for the beam corrections
- The tuning simulation **time increases** with the number of knobs

ILC FFS

Tuning preliminary results: Number of knobs

23 knobs \ightharpoonup 18h 24min (simulation time)

15% machines reach 60% of L_{T0}

 $10 \text{ knobs} \Longrightarrow 8h$

10% machines reach 30% of L_{T0}

 $L_{T0} = 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

LCWS14 ILC FFS slide 16/21

Tuning preliminary results: all knobs

- BBA + Knobs iterations do not improve the luminosity
- Need to optimize the weights β , ω_1 , ω_2
- 9 70% machines reach more than 70% of L_{T0} and 25% machines reach more than 80% of L_{T0}

Tuning optimization steps

- Luminosity evolution after each optimization step for 3 random machines
- The **2nd BBA cancels** the luminosity gain by the 1st sextupole knobs tuning but the luminosity is recovered after the 2nd sextupole knobs
- Need to optimize the tuning algorithm?

slide 18/21

Optimization step

LCWS14 ILC FFS

Tuning optimization steps

- The **full algorithm** is still the **best option** for the BBA + Knobs tuning
- Other simulations are progressing for different optimization steps
- Need to **optimize the weigths** β , ω_1 and ω_2

- 1-1 correction
- DFS1
- Sextupole-shunting
- Sextupole knobs 1
- DFS2
- Sextupole-shunting 2
- Sextupole knobs 2

LCWS14 ILC FFS slide 19/21

Weights optimization: β , ω_1 and ω_2

DFS1
$$\begin{pmatrix} b \\ \boldsymbol{\omega_1}(\eta - \eta_0) \\ 0 \end{pmatrix} = \begin{pmatrix} R \\ \boldsymbol{\omega_1}D \\ \boldsymbol{\beta}I \end{pmatrix} \begin{pmatrix} \theta_x \\ \theta_y \end{pmatrix}$$
DFS2
$$\begin{pmatrix} b \\ \boldsymbol{\omega_2}(\eta - \eta_0) \\ 0 \end{pmatrix} = \begin{pmatrix} R \\ \boldsymbol{\omega_2}D \\ \boldsymbol{\beta}I \end{pmatrix} \begin{pmatrix} \theta_x \\ \theta_y \end{pmatrix}$$

Theoretical value of ω :

$$\omega = \sqrt{\frac{\sigma_{\text{BPM res}}^2 + \sigma_{\text{BPM misalign.}}^2}{2\sigma_{\text{BPM res}}^2}}$$

- DFS equation must be weighted in order to have the same impact on the vector of observables on the left hand-side of the system
- The weights ω_1 and ω_2 are used for the dispersion terms while β for the SVD to limit the amplitude of the correctors θ
- Weight optimization is underway by simulating **several combinations of weights** on 40 seeds and by using as initial parameter the theoretical value of ω

Summary and conclusions

- The new traditional design using extra sextupoles for $L^*=8$ m provides a good correction of high order aberrations with 10% of total luminosity loss $(1.36 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
- The long last drift L^* limits the FFS performance especially for the non-local chromaticity correction scheme $\implies L^* = 6$ m provides better performances
- The tuning turns out to be **long due to the number of sextupoles** in the lattice
- With optimistic set up and errors parameters, the tuning of the system seems feasible but must be improved (70% machines reach more than 70% of ILC design luminosity)
- Several simulations are mandatory for the **optimization of the weights** β , ω_1 and ω_2 and the **alignment procedure** in order to conclude on the tunability of this design

slide 21/21