Top Properties and Future Prospects from the LHC

Andrey Loginov¹ for the CMS and ATLAS Collaborations

1 Yale University

International Workshop on Future Linear Colliders

The Top Quark

- The only fermion which has a significant coupling to the Higgs
 - The **heaviest particle** discovered so far
 - Strong top Yukawa coupling
- Plays key role in many important physics processes
 - Flavor physics, Electro-weak processes
- Plays a special role in a number of Beyond the Standard Model theories as well

Probing the Standard Model [GFitter group, arXiv:1407.3792]

- SM is self-consistent model accounting all particle physics phenomena at energy of current accelerators
 - with m_H all parameters of SM are known

 $m_w = 80385 \pm 15 \text{ MeV}$ $m_t = 173.34 \pm 0.76 \text{ GeV}$ $m_H = 125.36 \pm 0.41 \text{ GeV}$ Current p-value for (data | SM)=0.2 Need to improve m_w , m_t and m_H

Precision tests of further consistency of the SM are mandatory

LCWS Belgrade October 6-10, 2014

- Top pair production at the LHC through gg (dominant) and qqbar
- Top pair decay modes
 - The more jets, the more challenging the systematic uncertainties get (Jet energy scale, ISR/FSR etc)

What was Learned about the **Top Quark**

CMS

- Every topic deserves a dedicated long presentation
 - **CMS** Public Page: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>
 - ATLAS Public Page: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>

What We still Need to Learn

- Couplings to photon, Z, Higgs

 and maybe some other new heavy particles?
- FCNC?

many channels to test

- Charge asymmetry in top pair production
- Precise cross section and mass measurements
 - Differential measurements to test pQCD
 PDF studies
- And more
 - see the SnowMass'2013 Top Quark WG report arXiv:1311.2028 [hep-ph]

The LHC Roadmap

- LHC approved running to deliver 300 fb⁻¹ by 2021
- Post LS3 operation: **3000 fb⁻¹** over 10 years
 - Major upgrades required on the LHC
 - Need strong physics motivation for HL-LHC
- Detector Upgrades during Long Shutdowns (LS)
 - LS1 = Phase 0, LS2 = Phase 1, LS3 = Phase 2

- Higher bunch luminosity
 -> occupancy / event size
- Higher average luminosity
 - => trigger rates / radiation damage
- The goal is to achieve the same (or better) performance (resolution etc.) at the HL-LHC as at the LHC, despite the large increase in event rate

$0.2 \ x \ 10^{34} \ cm^{-2}s^{-1}$

- Higher bunch luminosity
 -> occupancy / event size
- Higher average luminosity
 - => trigger rates / radiation damage
- The goal is to achieve the same (or better) performance (resolution etc.) at the HL-LHC as at the LHC, despite the large increase in event rate

$10 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Consolidate detectors, address operational issues, prepare for high pileup

- Phase 0 complete muon coverage, improve muon trigger, new smaller radius beam pipes
 - CMS : Replace HCAL forward PMTs and outer HPD \rightarrow SiPM
 - ATLAS : Diamond beam monitor, additional pixel layer

End of the year Technical Stop Mantain / improve performance at high pileup

- Phase I CMS: new pixels, HCAL SiPMs, electronics, and L1-Trigger
 - 2018-2019 ATLAS: L1 trigger improvement, fast track trigger at L2, new muon small wheels

Mantain / improve performance at extreme pileup : sustain rate + radiation doses

- New inner detector, new calorimeter electronics, muon extension, trigger and DAQ upgrade
- CMS: track trigger, replace endcap calorimeters
 - ATLAS: replace inner tracker, new forward calorimeter

Btagging @ Run 2 and beyond

- Upgrade is mandatory for performance at high pile-up
 IBL @ ATLAS (installed)
 - new pixel detector @ CMS during the "End of the Year Extended Technical Stop"
- Studies done with top pair MC events @ 13 TeV

Run 2 and beyond: Techniques

Limitations

Pile-up, trigger thresholds etc.

- New Approaches
 - Tighter trigger requirement for leptons will help sustain approximately the same p_T thresholds
 - Need more careful study of the isolation, in particular effect of out-of-time pileup
 - Main concern for top physics: jets
 - Jet rate increases, jet resolution degrades
 - See "Jet finding techniques at hadron colliders" presentation by D. Boumediene @ Detector: Top: Boosted jets
 joint with Sim/Reco on Thursday, 14:00 - 15:30

Precision matters

Top Mass: Combination

LHC (7 TeV) + Tevatron first combination

arXiv:1403.4427 [hep-ex]

Top Mass: Combination Systematics

LHC (7 TeV) + Tevatron first combination

□ <u>arXiv:1403.4427 [hep-ex]</u>

	All values in GeV	CDF	D0	ATLAS	CMS	Tevatron	LHC	WA	
	Values	173.19	174.85	172.65	173.58	173.58	173.28	173.34	
i IFS : in situ tthar $(t \rightarrow Wh W \rightarrow a a b a r)$ calibration procedures									
• 1025. In Situ tibar (t 'WD, W 'qqbar) cambration procedures									
• SUJES: non-navor specific part of JES									
• 11	avourJES: diller	ent jet er	iergy res	ponse ioi	r ameren	it navors	1	0.12	
• b	JES: modelling of	t the resp	ponse of	jets origi	nating fr	om b-qua	rks	0.25	
	MC	0.57	0.(2	0.40	0.10	0.57	0.05	0.38	
MC: MC modeling									
 Rad: modeling of OCD radiation 									
CR: color reconnection									
Dete	ector modeling							0.11	
b-ta	g: modeling of t	he b-ta	gging ef	ficiencv	and the	e light-au	ark iet	0.10	
reiec	tion factors in	MC vs c	lata			8 1	J.	0.07	
rejec			iata					0.05	
		0.00	0100			0.00	0.00	0.04	
	Total Syst	0.85	1.25	1.40	0.99	0.82	0.92	0.71	
	Total	1.00	1.48	1.44	1.03	0.94	0.94	0.76	
_	χ^2/ndf	1.09/3	0.13/1	0.34 / 1	1.15/2	2.45 / 5	1.81/4	4.33 / 10	
	χ^2 probability [%]	78.1	72.0	56.2	56.2	78.4	77.1	93.1	
LCWS Belgrade October 6-10, 2014									

Top Mass: Combination Systematics

LHC (7 TeV) + Tevatron first combination

□ <u>arXiv:1403.4427 [hep-ex]</u>

All values in GeV	CDF	D0	ATLAS	CMS	Tevatron	LHC	WA
Values	173.19	174.85	172.65	173.58	173.58	173.28	173.34
Stat	0.52	0.78	0.31	0.29	0.44	0.22	0.27
iJES	0.44	0.48	0.41	0.28	0.36	0.26	0.24
stdJES	0.30	0.62	0.78	0.33	0.27	0.31	0.20
flavourJES	0.08	0.27	0.21	0.19	0.09	0.16	0.12
bJES	0.15	0.08	0.35	0.57	0.13	0.44	0.25
MC	0.56	0.62	0.48	0.19	0.57	0.25	0.38
Rad	0.09	0.26	0.42	0.28	0.13	0.32	0.21
CR	0.21	0.31	0.31	0.48	0.23	0.43	0.31
PDF	0.09	0.22	0.15	0.07	0.12	0.09	0.09
DetMod	< 0.01	0.37	0.22	0.25	0.09	0.20	0.10
<i>b</i> -tag	0.04	0.09	0.66	0.11	0.04	0.22	0.11
LepPt	< 0.01	0.20	0.07	< 0.01	0.05	0.01	0.02
BGMC	0.10	0.16	0.06	0.11	0.11	0.08	0.10
BGData	0.15	0.19	0.06	0.03	0.12	0.04	0.07
Meth	0.07	0.15	0.08	0.07	0.06	0.06	0.05
MHI	0.08	0.05	0.02	0.06	0.06	0.05	0.04
Total Syst	0.85	1.25	1.40	0.99	0.82	0.92	0.71
Total	1.00	1.48	1.44	1.03	0.94	0.94	0.76
χ^2/ndf	1.09/3	0.13 / 1	0.34 / 1	1.15/2	2.45 / 5	1.81/4	4.33 / 10
χ^2 probability [%]	78.1	72.0	56.2	56.2	78.4	77.1	93.1

Extrapolating standard methods Run 1 -> Run 2 and beyond

LCWS Belarade October 6-10, 2014

CMS updated combination

 Legacy Run I measurement from CMS (preliminary)
 New! CMS PAS TOP-14-015

Analysis		Reference	mt	Stat. uncertainty	Syst. uncertainty
			(GeV)	(GeV)	(GeV)
2010	di- <i>l</i>	[4]	175.50	4.60	4.52
	l + jets	[5]	173.10	2.10	2.66
	di- <i>l</i>	[6]	172.50	0.43	1.46
2011	l + jets	[7]	173.49	0.27	1.03
	all-jets	[8]	173.49	0.69	1.23
	di- <i>l</i>	[9]	172.47	0.17	1.40
2012	l + jets	[10]	172.04	0.11	0.74
	all-jets	[11]	172.08	0.27	0.84

CMS combination

September 2014

 $\mathbf{20}$

ttH => square of top Yukawa coupling One of the key points of Higgs physics program

н

н

н

لالالالالالالا

كففففقف

لالالالالالال

لاوووووو

وووووووو

- BR (H \rightarrow diphoton) 0.2%
- Higgs boson reconstructed as a narrow peak
- Non-Higgs backgrounds from ttbar+0/1/2 photon(s) and QCD multi-photon / jet final states

- ttbar + jets (incl.HF) backgrounds ${}^{5}_{\text{steal}}$ are highly important
 - Low N_{jets}, N_{b-jets} region (5j, 3b) allows to constrain HF systematics
 - Would profit from knowing the exact HF content in ttbar + HF
 - ATLAS-CONF-2014-011

 Similar approach in the dilepton channel

- Some ATLAS and CMS Run 1 results
 - □ Combination for CMS and $H \rightarrow bb$ (dilepton and lepton+jets) for ATLAS
- Run 2 will answer many questions

Modeling uncertainties

CMS and ATLAS

	Rate ur					
Source	Signal Backgrounds		Shape			
Experimental						
Integrated luminosity	2.2–2.6%	2.2–2.6%	No			
Jet energy scale	0.0–8.4%	Yes				
CSV b-tagging	0.9–21.7%	3.0–29.0%	Yes			
Lepton reco. and ID	0.3–14.0%	1.4 - 14.0%	No			
Lepton misidentification rate (H \rightarrow leptons)	— 35.1–45.7%		Yes			
Tau reco. and ID (H \rightarrow hadrons)	11.3–14.3% 24.1–28.8%		Yes			
Photon reco. and ID (H \rightarrow photons)	1.6–3.2%		Yes			
MC statistics		0.2–7.0%	Yes			
Theoretical						
NLO scales and PDF	9.7–14.8%	3.4–14.7%	No			
MC modeling	2.3–5.1%	0.9–16.8%	Yes			
Top quark $p_{\rm T}$		1.4–6.9%	Yes			
Additional hf uncertainty (H \rightarrow hadrons)		50%	No			
H contamination (H \rightarrow photons)	36.7-	-41.2%	No			
WZ (ZZ) uncertainty (H \rightarrow leptons)		22% (19%)	No			

\checkmark ttH & tH, H \rightarrow diphotons $_$

- Why Higgs to diphoton channel?
 Excellent mass resolution
- **tH** => Strong interference between tH diagrams
 Sensitive to the relative sign of ttH and WWH couplings

arXiv:1211.3736v2 [hep-ph]

	$\sigma^{\rm LO}(pp -$	$\rightarrow thj$ [fb]	$\sigma^{\rm LO}(pp \to thjb)$ [fl			
	$c_F = 1$	$c_F = -1$	$c_F = 1$	$c_F = -1$		
8 TeV	17.4	252.7	5.4	79.2		
14 TeV	80.4	1042	26.9	363.5		

Analysis selection

- Same trigger and photon selection requirement as in H to diphoton
- $p_T^e > 15 \text{ GeV}, p_T^{\mu} > 10 \text{ Ge}, p_T^j > 25 \text{ GeV}$
- Hadronic channel: 5/6j, ≥1/≥2 b-tags, lepton veto
 - Optimization
 - Suppress non-Higgs processes
 - High purity of ttH w.r.t. non-ttH Higgs processes (ggF)
- Leptonic channel : $N_{lep} \ge 1$, $M_{e\gamma}$ veto, $N_{btag} \ge 1$, minimal MET
 - Optimization: High ttH signal efficiency

- 8 TeV Run 1 ATLAS paper submitted to PLB
 - □ <u>arXiv:1409.3122 [hep-ex]</u>
 - $\begin{tabular}{ll} $$\mu(ttH) > 6.7 x SM (4.9 x SM)$ excluded (expected) \end{tabular}$
 - Top Yukawa coupling limits
 - **c**_t < -1.3 and **c**_t > +8.0 are excluded

N_B
$0.5^{+0.5}_{-0.3}$
$0.5_{-0.3}^{+0.5}$
$0.9^{+0.6}_{-0.4}$
$2.7^{+0.9}_{-0.7}$

- 8 TeV Run 2 ATLAS paper submitted to PLB
 - □ <u>arXiv:1409.3122 [hep-ex]</u>
 - $\mu(ttH) > 6.7 xSM (4.9 xSM)$ excluded (expected)
 - Top Yukawa coupling limits
 - c_t < -1.3 and c_t > +8.0 are excluded

<i>ttH</i> [%]		tHqb [%]		WtH [%]		ggF [%]	WH [%]	
had.	lep.	had.	lep.	had.	lep.	had.	lep.	
			± 2.8					
±5.6	± 5.5	±5.6	± 5.5	±5.6	± 5.5	±5.6	±5.5	
< 0.1	±0.7	< 0.1	±0.6	< 0.1	±0.6	< 0.1	±0.7	
±7.4	±0.7	±16	±1.9	±11	± 2.1	±29	±10	
0.24 evt.	0.16 evt.	applied on the sum of all Higgs boson production proc					duction processe	S
+10,-13		+7,	-6	+14,	-12	+11,-11	+5.5, -5.4	
±11	± 3.3	±12	±4.4	±12	±4.6	±130	±100	
	ttH had. ± 5.6 < 0.1 ± 7.4 0.24 evt. ± 10 ± 11	$\begin{array}{c c} ttH [\%] \\ had. & lep. \\ \hline \pm 5.6 & \pm 5.5 \\ < 0.1 & \pm 0.7 \\ \pm 7.4 & \pm 0.7 \\ \hline 0.24 \text{ evt.} & 0.16 \text{ evt.} \\ +10,-13 \\ \pm 11 & \pm 3.3 \\ \end{array}$	ttH [%] $tHqb$ had.lep.had. ± 5.6 ± 5.5 ± 5.6 < 0.1 ± 0.7 < 0.1 ± 7.4 ± 0.7 ± 16 0.24 evt. 0.16 evt.applied $\pm 10,-13$ $\pm 7,$ ± 11 ± 3.3 ± 12	ttH [%] $tHqb$ [%]had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 < 0.1 ± 0.7 ± 7.4 ± 0.7 ± 16 ± 1.9 0.24 evt. 0.16 evt. ± 11 ± 3.3 ± 12 ± 4.4	ttH [%] $tHqb$ [%] WtH had.lep.had.lep.had. ± 3.3 ± 5.6 ± 5.5 ± 5.6 ± 5.6 ± 5.6 ± 5.6 ± 5.5 ± 5.6 ± 5.5 ± 5.6 < 0.1 ± 0.7 < 0.1 ± 0.6 < 0.1 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 11 0.24 evt. 0.16 evt.applied on the sum of a $\pm 10,-13$ $\pm 7,-6$ $\pm 14,$ ± 11 ± 3.3 ± 12 ± 4.4 ± 12 ± 4.4 ± 12	ttH [%] $tHqb$ [%] WtH [%]had.lep.had.lep.had.lep.had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 < 0.1 ± 0.7 < 0.1 ± 0.6 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 11 ± 2.1 0.24 evt. 0.16 evt.applied on the sum of all Higgs $\pm 10,-13$ $\pm 7,-6$ $\pm 14,-12$ ± 11 ± 3.3 ± 12 ± 4.4 ± 12 ± 4.6	ttH [%] $tHqb$ [%] WtH [%] ggF [%]had.lep.had.lep.had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 ± 5.6 ± 5.6 < 0.1 ± 0.7 < 0.1 ± 0.6 < 0.1 ± 0.6 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 11 ± 2.1 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 11 ± 2.1 0.24 evt. 0.16 evt.applied on the sum of all Higgs boson prod $+10,-13$ $+7,-6$ $+14,-12$ $+11,-11$ ± 11 ± 3.3 ± 12 ± 4.4 ± 12 ± 4.6	ttH [%] $tHqb$ [%] WtH [%] ggF [%] WH [%]had.lep.had.lep.had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 ± 5.6 ± 5.5 < 0.1 ± 0.7 < 0.1 ± 0.6 < 0.1 ± 0.6 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 11 ± 2.9 ± 10 0.24 evt. 0.16 evt.applied on the sum of all Higgs boson production processe $\pm 10, -13$ $\pm 7, -6$ $\pm 14, -12$ ± 130 ± 100

Run 2 and beyond: Conditions

- Higher center-of-mass energy
 Acceptance x Efficiency should stay the ~same
 - Larger momenta of ttH decay products
 - Might need to increase some object p_T cuts (jet p_T? lepton p_T?)
- Photon ID, lepton isolation, jet resolution
 Don't expect huge changes

A lot more data

- New categories?
- Better optimizations?
- In Run 2 systematic uncertainties did not have a large impact on the limits

In Run 2 (and beyond) this will change

- N_{jets} and HF uncertainties are essential for many optimizations
 - With higher statistics they will greatly limit the sensitivity
- N_{jets}: will be constrained with more data
 - ggF + jets (hadronic), WH + jets (leptonic)
 - Additional N_{jet} categories?
- HF
 - □ ggF + HF (hadronic), WH + HF (leptonic)
 - Additional N_{bjet} categories?
 - Learn from tt+HF and from tt+H(bbbar)
 - These will help to improve theory predictions too
- **JES** and other typical top analyses uncertainties
 - Profiling?
 - JES-independent observables?

- More data = better selection optimization
 - Dilepton category
 - Including Lepton+tau
 - Tau + jets category
 - Expect low S/B
 - Reoptimize all-hadronic category?
 - Requires reduction of N_{jets} and HF uncertainties
 - Discriminate ggF vs ttH (hadronic) to gain ttH signal
 - Need Monte Carlo simulation of H + \geq 4 jets production
 - For instance, can then go down to 4 jets selection
 - Split in N_{jets}, N_{bjets} bins
 - Inputs to a Multi-Variate discriminant
 - Photon kinematics to distinguish ttH from non-ttH

• HL-LHC is the benchmark Higgs factory

- Theoretical uncertainties affect the ultimate precision achievable by LHC experiments
 - Reducing them it is for sure worth the effort
 - Both in MC and data-driven way (the latter would be preferable but not always possible)

- Really looking forward to Run 2 and beyond
- Top Mass
 - Challenging measurement, but expect to reduce systematic uncertainty to few hundred MeV

• ttH

- Get from setting limits to performing the measurements
- Test the anomalous top-Yukawa coupling
 - Exclude C_t=-1 early on in Run 2
- Re-optimize, add channels, get the most from the available data
- (many other) Top Properties
 - Many things are still unknown (to the desired precision)

