Proposal: Benchmarking for the ILD optimisation study

J.List

ILD Meeting @ LCWS

Belgrade, October 8, 2014

Goals of further Simulation Studies

Open physics case questions

- High-level perspective
- Ultimate luminosity requirements
- Polarisation sharing
- Not yet (fully) demonstrated key measurements
- => interplay with running strategy & accelerator & detectors

Detector issues not yet studied (sufficiently)

- Calibration & alignment
 - => need for Z pole running?
 - => machine implications!
- Systematic uncertainties
- PID, low momentum particles...

Detector cost justification (reduction?)

- shrink overall size?
- Ecal technology?
- Why a TPC?

– ...

Change requests from machine

- $L^* = 4.4 \text{ m} \rightarrow 4.0 \text{ m}$?
- Crossing angle 14mrad -> 10mrad ?
- => cf Yokoya-San's presentation & MDI session

Strategy for Detector & Physics Benchmarking

- 1-1 relation between physics measurement and one specific detector performance aspect is *rare*
- ⇒can we factorize the two?
- Physics studies:
 - formulate requirements on various detector performance aspects, ideally "partial derivative"
 - this includes requirements on controlling systematics
- Detector benchmarking:
 - Test a comprehensive list of performance aspects for various detector configurations

Strategy for Factorisation

Detector-level performance

- Efficiencies, resolutions etc
- Study for O(3-4) detector models in full simulation

Example: Particle ID

- Determine actual capabilities in FullSim
- Study impact on analyses by varying PID efficiencies & fake rates in SGV

Physics performance

- ILD_o1 full simulation: reference analysis
- Where ever possible: determine relative impact of
 - efficiencies
 - resolutions
 - systematic uncertainties

in SGV or cheated full sim

Optimisation benchmarks - Detector Level -

- Hermeticity:
 - for high E (>90% E_{heam} ?) e^{+-}/γ
 - for "normal" e, μ , γ , π , n
- Calorimetry:
 - Jet energy resolution, including 5 < E_{iet} < 50 GeV
 - Photon energy & angle resolution
 - Bhabha reconstruction
- Tracking system:
 - Efficiency, fake rate
 - $-\sigma(1/p_t), \sigma_{IP}$
 - Vertex efficiency, resolution
 - Jet charge
 - Flavour tag

- Low momentum particles (p₊ = 0.1....2 GeV):
 - Tracking efficiency, $\sigma(1/p_t)$, σ_{IP}
 - Calorimeter detection efficiency
- Particle ID (dE/dx & calo)
 - $e/\mu/\pi^{+-}/p/K/n/\pi^0/\gamma$
 - Low p_t and "normal"
 - Particle ID in jets
- Exclusive decay mode reconstruction:
 - τ leptons
 - B, D hadrons

Optimisation benchmarks - Physics Level -

m_H from ee->vvH->vvbb

- JER
- π^0 reconstruction
- b-tag, I in jet, excl. B decays
- JES, b-tag, had., frag, neutral hadrons fraction uncertainties

Similar, but for "light jets": m_w from ee->evW->evqq

A_{FB} (top)

- JER, lepton ID, b-tag
- Jet charge, excl. B-decays,

Higgs CP properties H->ττ

- τ reconstruction
- PID, Exclusive decay modes
- momentum & impact parameter

Near-degenerate Higgsinos

- Reco of low momentum particles
- Fake tracks
- PID, Exclusive decay modes
- Hermeticity
- Low and high-energy photon energy & angle resolution

Mono-photon WIMPs

Photon energy resolution & scale, hermeticity, suppression of Bhabhas, dL/dE_{CM}

First Testcase: Hermeticity

- Two changes in the pipeline
 - L*: we have been asked to evaluate how far can reduce L*
 - Smaller crossing angle 14 -> 10 mrad: this is an offer from the machine side – but will only come if we quantify the benefits
- In both cases:
 - Study hermeticity for e, y, mu, hadrons in various configurations
 - Quantify impact of loss / gain of hermeticity for physics analyses
- => Understand "parameter space" around the optimum, take informed decision

News from the ILD Analysis WG

- Started to collect an up to date list of ongoing activities – will help to channel newcomers to places where they're most urgently needed
 - please check http://agenda.linearcollider.org/getFile.py/access? contribId=6&resId=0&materialId=slides&confId=6526
 - Email comments / additions to jenny.list@desy.de
- Started a subgroup on systematic uncertainties led by M. Vos, G. Wilson + NN (Higgs/flavour tag)

Your comments?