The Case for Jet Substructure

Jesse Thaler

LCWS 2014, Belgrade — October 6-10, 2014

UA2 Jet Production

1982

Almost 40 years of jet physics!

[see also SPEAR, 1975; PETRA, 1979]

A QCD Renaissance!

c. 2008-present

LHC (vs. Tevatron)

Higher Energy (≈ x3.5–7)

Higher Luminosity (≈ x10–20)

Finer Segmentation (≈ x5)

Theoretical Progress

New Jet Algorithms (esp. anti-k_T) Loop/Leg/Log Explosion Jet Substructure

[Anti-k_T: Cacciari, Salam, Soyez, 2008]

[BDRS: Butterworth, Davison, Rubin, Salam, 2008; see also Seymour, 1991, 1994]

The Case for Jet Substructure

Maximize discovery potential of LHC

Enhance understanding of QCD

What does this have to do with future lepton colliders?

Maximize discovery potential of LHC

Enhance understanding of QCD

Jets or Jet Substructure?

[CMS EXO-11-006, CMS JME-13-007]

[Using JHU/CMSTopTagger: Kaplan, Rehermann, Schwartz, Tweedie, 0806.0848] [Using Pruning: Ellis, Vermilion, Walsh, 0903.5081]

Jets or Jet Substructure?

[CMS EXO-11-006, CMS JME-13-007]

[Using JHU/CMSTopTagger: Kaplan, Rehermann, Schwartz, Tweedie, 0806.0848] [Using Pruning: Ellis, Vermilion, Walsh, 0903.5081]

High Energy: Boosted Regime is Inevitable

High Luminosity: Pileup is Inevitable

[ATLAS PERF-2012-02] [Krohn, JDT, Wang, 0912.1342]

High Stakes: Cleverness is Inevitable

Mass Drop, p_T Balance, Y-splitter,
Filtering, Trimming, Pruning, Soft Drop,
Angularities, Planar Flow, N-subjettiness,
Angular Structure Functions, Jet Charge, Jet Pull,
Energy Correlation Functions, Dipolarity, p_T^D,
Zernike Coefficients, Fox-Wolfram Moments,
JHU/CMSTopTagger, HEPTopTagger,
Template Method, Shower Deconstruction,
Jets Without Jets, Subjet Counting, Wavelets,
Q-Jets, Telescoping Jets, Jet Reclustering, etc.

Core Principles of Jet Substructure:

Prong-like Behavior Radiation Patterns Flavor Tagging

(& Pileup Mitigation)

 $t \to bW$

 $H \to b \overline{b}$

 $Z \to q \bar{q}$

 $W \to q\bar{q}'$

b

C

S

u

9

Jesse Thaler — The Case for Jet Substructure

t o bW $H o bar{b}$ $Z o qar{q}$ $W o qar{q}'$

Quark-like vs. Gluon-like

$$C_F = 4/3$$

$$C_A = 3$$

e.g. Angularities:

(a.k.a. I-subjettiness)

$$e_{eta} \simeq \sum_{i \in \mathrm{jet}} z_i \, (\theta_i)^{eta}$$
 energy fraction angle to axis

[Berger, Kucs, Sterman, 2003; Ellis, Vermilion, Walsh, Hornig, Lee, 2010] [Recoil-free Versions: Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT, 2014]

$t \to bW$ $H \to b\bar{b}$ $Z \to q \bar{q}$ $W \to q \bar{q}'$ Su

(Sub)jet B-tagging

[CMS BTV-13-001]

Boon for New Physics Searches

e.g. Heavy W'Search

Trimming + B-tagging + k_T Splitting + N-subjettiness

b-tag

[ATLAS, I 408.0886]

Maximize discovery potential of LHC

Enhance understanding of QCD

Techniques Inspire Analytics...

Jet Trimming

[Krohn, JDT, Wang, 0912.1342]

(Modified) Mass Drop

[Butterworth, Davison, Rubin, Salam, 0802.2470]

Trimmed Jet Mass

Mass-Dropped Jet Mass

[Diagrams from ATLAS, 1306.4945] [Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

...Inspire Techniques (and Analytics)...

(Modified) Mass Drop

[Butterworth, Davison, Rubin, Salam, 0802.2470]

Mass-Dropped Jet Mass

[Diagrams from ATLAS, 1306.4945] [Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

...Inspire Measurements!

The Case for Jet Substructure

Exceptional LHC performance + Extreme kinematics + Jet contamination + (B)SM physics

Maximize discovery potential of LHC

Creative analysis strategies for hadronic final states

Enhance understanding of QCD

New analytic results in (non)perturbative field theory

The Case for Jet Substructure

Jesse Thaler

LCWS 2014, Belgrade — October 6-10, 2014

Backup Slides

Reconsidering Old Assumptions

Recoil-Sensitive vs. Recoil-Free Angularities

Measure of gluon radiation about hard jet core

Which Axis?

Recoil-Free: Measurement Axis ≈ Hard Parton

Winner-Take-All Axis (Median)

[Bertolini, Chan, JDT, 1310.7584; Larkoski, Neill, JDT, 1401.2158; Salam, unpublished]

Old Ideas Revisited

Weighted Jet Charge...

$$Q_{W}(p) = \sum_{i} z_{i}^{p} q_{i}$$

[Feynman, Field, 1978]

...on Firm Theoretical Ground

Generalized Fragmentation Function

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} D_i(Q, \kappa, \mu) = \frac{1}{2} \sum_j \int \mathrm{d}Q_1 \, \mathrm{d}Q_2 \, \mathrm{d}z \, \gamma_{ij}^D(z, \mu)$$
$$\times D_j(Q_1, \kappa, \mu) D_{a(ij)}(Q_2, \kappa, \mu)$$
$$\times \delta[Q - z^{\kappa} Q_1 - (1 - z)^{\kappa} Q_2]$$

[Krohn, Schwartz, Lin, Waalewijn, 1209.2421; Waalewijn, 1209.3019] [ATLAS-CONF-2013-086]

Old Measurements Revisited

Track-Based Observables

SCET + "Track Functions"

Theme: Non-perturbative Objects with Perturbative Evolution

New Measurements Required

Quark/Gluon Truth Overlap

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} \theta_i^{\beta}$$

[Larkoski, JDT, Waalewijn, 1408.3122]

New Calculational Paradigms

Angularities:
$$e_{\beta} \simeq \sum_{i \in \text{jet}} z_i \left(\theta_i\right)^{\beta}$$
energy fraction angle to axis

Ratio Observables:

(Ubiquitous in Jet Substructure)

New Calculational Paradigms

Angularities:
$$e_{\beta} \simeq \sum_{i \in \text{jet}} z_i (\theta_i)^{\beta}$$

energy fraction angle to axis

Ratio Observables:

(Ubiquitous in Jet Substructure)

$$r = \frac{e_{\alpha}}{e_{\beta}}$$
Sudakov Form Factor
$$\Rightarrow \text{"Sudakov Safe"}$$

$$0.8$$

$$\frac{1}{\sigma} \frac{d\sigma}{e_{\beta}}$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.8$$

$$0.0$$

$$0.0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.8$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$\frac{\mathrm{d}\sigma^{\mathrm{LL}}}{\mathrm{d}r} = \sqrt{\alpha_s} \frac{\sqrt{C_F \beta}}{\alpha - \beta} \frac{1}{r} + \mathcal{O}(\alpha_s)$$

Unsafe...but Calculable

[Larkoski, IDT, 1307.1699]

A Standard Candle for Jets?

Soft Drop $(\beta \rightarrow 0)$

(a.k.a Modified Mass Drop)

Fractional Energy Loss

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\log\Delta_E}\Big|_{\beta=0} \propto \frac{1}{\log^2\Delta_E}$$

no α_s at fixed coupling (!) \approx independent of quark vs. gluon \approx independent of jet p_T , jet radius

[Larkoski, Marzani, Soyez, JDT, 1402.2657; Larkoski, JDT, 1406.7011]