

HIGGS SELF COUPLING ANALYSIS USING THE EVENTS CONTAINING H→WW* DECAY

Masakazu Kurata, Tomohiko Tanabe The University of Tokyo Junping Tian, Keisuke Fujii KEK

Taikan Suehara Kyushu University

LCWS14, 10/06/2014-10/10/2014

INTRODUCTION

- Measuring the Higgs self coupling is the key point to prove the electroweak symmetry breaking mechanism
 - Higgs potential in SM:

- Observing two Higgs bosons in the event is the only way to measure the self coupling
- Accurate test of the coupling may lead to the extended nature of Higgs sector → may go to new physics
- Our goal is to observe and measure the Higgs self coupling first

SIGNAL EVENTS Signal@500GeV - e+e-→Z*→ZH→ZHH can be used

Signal: 2 Irreducible B.G.: 1, 3, 4

Signal@1TeV - VBF $e^+e^- \rightarrow \nu \nu$ HH channel is opened

Increase the cross section of VBF

Signal:1 Irreducible B.G.: 2, 3, 4

Higgs decay modes:

- HH→(bb)(bb): golden channel thanks to b-tag
- HH→(bb)(WW): improve the final result

COMPONENTS FOR BETTER RESULTS

- Basic components for better sensitivity
 - Lepton ID: Isolated leptons can be identified well, and very good fake suppression
 - →many idea have been introduced
 - B-tagging: better b-tagging algorithm provides better background suppression
 - Jet pairing: good jet pairing can obtain good kinematic variables, which leads to good background suppression
 - Good energy & momentum resolution: of course, but limited by the detector performance
 - →particle ID will be the key to energy correction
 - Jet clustering: jet reconstruction is the key to the analysis, but it is difficult
- All the components are related each other

TRACK ENERGY CORRECTION

- Track energies are corrected using momentum & mass
 - Using particle ID to identify tracks
- Visible energy
 - Using qqHH→qq(bb)(bb)
 - So far, overestimated due to misID
 - oo iai, overestimated due to misib

Correction effect is small due to neutrals 0.04

- Mass distribution
 - Checking $Z(Z \rightarrow qq, q \text{ is light})$ and $H(H \rightarrow bb)^{200}$
 - Jet matching with MC truth is applied
 - Effect is small too due to neutrals

Evisible (GeV)

Reconstructed

With correction

≣ o.1⊢Perfect for charged

0.06

0.02

JET PAIRING USING BAYESIAN APPROACH

Bayesian probability – posterior probability when x is given

$$P(A|x) = \frac{P(x|A) \cdot P(A)}{P(x)}$$

P(x|A): likelihood(probability when x is given from class A)

P(A): prior probability of class A

P(x): probability of variable x (sum of all the classes' p.d.f.)

- Bayesian classifier regard x as the element of class A,
 - When P(A|x) is largest of all the classes
 - o e.g. x belongs to A when P(A|x)>P(B|x), P(A|x)>P(C|x), etc.
- Likelihood introduce angle information
- In WW*→jjjj case, combination
 is 3
 - Jet with large energy tends to come from on-shell W

PRELIMINARY RESULTS & PROBLEM

- WW→jjjj pairing case
 - Also check maximum likelihood using LDA
 - $\chi^2 = -2\log BW(m(j1j2)|m_W, \Gamma_W)$

Pairing type	X 2	Just likelihood	Naïve Bayes
True positive(%)	60.2	70.1	74.7

Good improvement can be obtained!

Looks hopeful, but...

- o ZH→(bb)(bb) case
 - $\chi^2 = \frac{(m_1 m_Z)^2}{\sigma_Z^2} + \frac{(m_2 m_H)^2}{\sigma_H^2}$

Pairing type	X 2	Just likelihood	Naïve Bayes
True positive(%)	56.6	59.8	59.8

- Improve slightly thanks to the angle information
- But, need more improvement…
 - No improvement even if using naïve Bayes…
- Can we get better result?

TRYING KINEMATIC FITTER

- Determining the kinematics globally in the events
 - Distort the event kinematics to meet the constraint in specific process
 - Estimate how much is a event likely to the specific process?
 - Mass resolution will be improved by using χ^2 minimization

- o First trial: ZHH \rightarrow (bb)(bb)(WW*) \rightarrow (bb)(bb)($|\nu jj\rangle$) kinematic fitter
 - Constraints:

$$\begin{split} m(bb) &= m_Z \\ Max\big(m(lv), m(jj)\big) &= m_W \\ m(bb) &= m(lvjj) \\ E(H) + E(Z) + E(jj) + E(lv) &= \sqrt{s} \\ \overrightarrow{p_H} + \overrightarrow{p_Z} + \overrightarrow{p_{jj}} + \overrightarrow{p_{lv}} &= \overrightarrow{0} \end{split}$$

JET ENERGY RESOLUTION

- Most critical factor which degrades mass resolution is jet energy resolution
 - So it is necessary to include this effect into Kinematic fitter
 - Jet energy resolution has energy dependence of jets
 - Parameterize fit parameters with jet energy

ZH→ZHH

ILD Preliminary

To include asymmetric energy resolution

PERFORMANCE CHECK

- O Higgs mass(H→bb) & Z mass distribution
 - Mass resolution is going better! →promising

- Higgs(H \rightarrow WW* \rightarrow I ν jj)
 - No resolution improvement…
 - →under investigation

POSSIBILITY OF FLAVOR TAGGING IMPROVEMENT

- For flavor tagging improvement
 - Vertex mass is the key to separate heavy/light flavor vertex
 - Many pi0s will escape from B/D vertex → checked that using MC truth
 - Mass resolution will be degrade due to escaping neutrals
 - Is there possibility to recover pi0s which escape from vertices?
- \circ Building π^0 finder many components are necessary
 - Gamma finder using shower profile in calorimeters
 - π⁰ finder solving gamma pairing
 - Vertex finder which vertex is the π^0 coming?
- Find vertex of pi0s:
 - Very difficult to identify vertex depends on detector configuration
 - Making the best of decay kinematics
 - Using TMVA to find pi0 candidates from the vertex
 - Details: my talks@software/simulation session(Thursday)

11

A CLUE FOR FLAVOR TAGGING IMPROVEMENT

- We have Particle ID! it is the key
 - Using TPC dE/dx and shower profile in calorimeters
 - ID efficiency using Particle ID

- From PID Different vertex patterns have different vertex mass patterns
- o examples
 - 1) K+π vs. π+π
 - 2) $\pi + \pi$ vs. $\pi + \pi + \pi$

• Can good and general classifier(MVA) to separate pi0s from vertices and pi0s from IP be constructed?

VTX MASS RECOVERY USING PIO VERTEX FINDER

- Vtx mass distributions for each vertex pattern(ntrk)
 - When a jet has 1 vertex(secondary) inside itself
 - Gamma pairing is perfect within pi0 reconstruction capacity

MOST REALISTIC SITUATION

- Pi0 is reconstructed from PFO gamma candidates
 - Using gamma finder
 - Using pi0 reconstruction
 - Using pi0 vertex finder

Reconstruction

Pairing & pi0 attachment perfect
Pairing perfect
Realistic situation

VERTEX MASS RECOVERY EFFECT ON FLAVOR TAGGING

- Construct a "toy" flavor tagger
 - Variables are obtained from LCFIPlus
 - Input variable selection is too primitive!
 - Only vertex mass is replaced to recovered vertex mass
 - Compare with ROC curve

For more precise study, need to step into LCFIPlus

SUMMARY AND PLAN

- Higgs self coupling analysis using the events with H→WW* is ongoing.
 - Improvement of basic analysis components is necessary
 - Effect of track energy correction using particle ID is small, but going to good direction
 - Kinematic fitting will be a good tool for mass resolution improvement
 - There is hope for flavor tagging improvement!

o Plan:

- Optimization of kinematic fitter & performance check of signal & backgrounds
- Flavor tagging study inside LCFIPlus
- Study of flavor tagging improvement in 0 vertex jet case
- Finally, incorporate all the improvements and update the self-coupling result!

BACKUPS

ANALYSIS STRATEGY FOR HH→(BB)(WW)

Olassify the events with Z and W decays:

@500GeV	WW→(qq)(qq)	WW→(qq)(I <i>ν</i>)	@1TeV	WW→(qq)(qq)	WW→(qq)($ \nu $)
Z→bb	8jets	Lepton+6jets	Z→bb	8jets	Lepton+6jets
Z→cc	8jets	Lepton+6jets	Z→II	Dilepton+6jets	N/A
Z→II	Dilepton+6jets	Trilepton+4jets	ννΗΗ	6jets (+missing)	N/A

Z decays into heavy flavor pair or lepton pair mainly

- Need flavor tagger or clean Z mass distribution to reject huge backgrounds
- Number of b jet candidates in the event and number of leptons can form exclusive samples
 - Number of b-tagging available: up to 4
 - Basically, 2 or 4 b-tagged jets events can be used
 - o c-tagging is also available
 - Number of leptons: from 0 to 3

SOFT JET FINDING

- Tracks in the gluon jets spread wider than those in quark jets(e.g. analyses on hadron collider)
 - Traditional jet shape can be a good estimator

Using Multivariate Analysis and estimating the hard jet likeliness for

19

off jet candidates

0.8

CHECK THE PERFORMANCE

- Check the jets with small hard jet likeliness signal vs. ttbar
- For 6jets

For 8iets

FLAVOR TAGGING Using LCFIPlus

- b candidate is set >0.4
- Final b-likeliness is optimized after MVA cut

- Introduce combined b-tagging
 - After solving the jet pairing
 - $b(Combined) = \log(\frac{b_1b_2}{(1-b_1)(1-b_2)})$
 - Use as an input variable for MVA

BACKGROUND REJECTION Multi Variate Analysis @500GeV

- Some cuts are implemented before MVA to tighten the input variable space jet energy, χ^2 , visible energy, (Z mass)
- Background rejection strategy: rejecting small backgrounds first and then rejecting main background
 - Tighten the variable space when rejecting main backgrounds

e.g. all hadronic case:

leptonic ttbar hadronic 8jets MVA ttbar+QQ ttbar(lep+jets, All hadronic dilepton) ttbar+Z ZZ+H, ZZZ ttbar+H

Multi Variate Analysis @1TeV

Same strategy as the case of 500GeV

SOME KINEMATIC VARIABLES USED FOR MVA

Very powerful variable @500GeV: m(jjjj), m(l ν jj)

SOME KINEMATIC VARIABLES USED FOR MVA

Very powerful variable @1TeV: m_H , $\cos \theta$ (Hbb)

Non-simple variables used for MVA

Sphericity and aplanarity

Eigenvalue combinations of sphericity tensor:

$$S^{\alpha\beta} = \frac{\sum_{i} p_i^{\alpha} p_i^{\beta}}{\sum_{i} |\mathbf{p}_i|^2}$$
, eigenvalues: $\lambda_1 > \lambda_2 > \lambda_3$

- Sphericity: $S = \frac{3}{2}(\lambda_2 + \lambda_3)$
- Aplanarity: $A = \frac{3}{2}\lambda_3$
- Indicates whether the event is 2-jets like or isotropic

Non-simple variables used for MVA

o Fox-wolfram moments

$$H_l = \sum_{i,j} \frac{|\mathbf{p}_i| |\mathbf{p}_j|}{E_{\text{vis}}^2} P_l(\cos \theta_{ij}) ,$$

- P_I is Legendre polynomials
- Those moments characterize the structures of 2jets, 3jets, or isotropic events

MVA OUTPUTS EXAMPLES(ALLHADRONIC@500GEV)

cut of MVA:

MVA8jets>0.08

MVAlep>0.02

MVAhad>0.74

MVA OUTPUTS EXAMPLES(NNHH@1TEV)

cut of MVA:

MVAZZX>0.34

MVAttbarX>0.86

MVAttbar>0.91

SENSITIVITY@500GEV o HH→(bb)(WW)

- As mentioned, categorized with decay tipes of Z and W boson
 Z→bb, cc or II
- b-tagging strategy introduce looser b-tag category
 4-btag & 3-btag
- E_{CM}=500GeV, L=2ab-1
- Significance \sim 1.91 σ

Modes	Z decay	b tag	Signal	Background	Significance
All hadronic	Z→bb Z→cc	4btag 3btag	15.20 19.43 11.29	87.52 3099.49 366.13	1.50 σ 0.35 σ 0.58 σ
Lepton + jets	Z→bb Z→cc		1.65 1.50	17.62 819.61	0.38 σ 0.05 σ
Dilepton	Z→II		2.24	8.44	0.69σ
Trilepton	Z→II		1.05	2.60	0.55σ
Combined					1.91 σ

SENSITIVITY@1TEV o HH→(bb)(WW)

- As mentioned, categorized with decay types of Z and W boson
 Z→bb and II, VBF channel
- b-tagging strategy fully used the b-tagging for each category
- E_{CM}=1TeV, L=2ab-1
- Significance \sim 2.80 σ

Modes	Z decay	Signal	Background	Significance
All hadronic	Z→bb	17.15	48.17	2.12 σ
Lepton + jets	Z→bb	1.16	9.24	0.36σ
Dilepton	Z→II	1.03	14.30	0.26σ
6jets+ Missing	No Z, νν HH	6.90	8.24	1.77 σ
Combined				2.80 σ

SUMMARY AND PLAN

- Higgs self coupling analysis using the events with H→WW* is ongoing.
 - Multi variate analysis to reject the backgrounds
 - Total sensitivity @500GeV is ~1.91 σ
 - Total sensitivity @1TeV is ~2.80 σ

o Plan:

- Start to combine with golden channel and estimate the Higgs self coupling
- Full simulation @1TeV
- Optimize b-tagging strategy
 - Forming looser b-tag category
- Improvement of basic components for the analysis
 - Lepton ID
 - b-tagging
 - Jet energy correction
 - Jet clustering

SOFT JET FINDING

- Soft jet finding may be available for the events with extra jets not coming from hard process quarks
 - e.g. 8 jets requirement to ttbar hadronic events(6 jets from hard quarks)

Traditional jet shape indicates the same tendency as hadron collid<mark>er</mark>

p(r)

analysis

$$\psi(\cos\theta) = \int_{1}^{\cos\theta} \frac{p(r)}{p_{iet}} dr$$

32

SOFT JET FINDING

- Hard jet likeliness is introduced
 - Using MVA to form it
 - Analysis samples are divided into 2 based on the angle with the nearest jet
 →large shared area for both jets deteriorate the traditional jet shape
- Use the likeliness for the input of background rejection MVA or simple cut of backgrounds

REDUCTION TABLE

All hadronic

- o Final b-tagging: btag(3)>0.92 && btag(4)>0.44
- O HH→bbbb contamination is 5.41 events

III							
process	signal	ttbar	tt + QQ	tt+Z	tt + H	ZZ + H	ZZZ
expected	354.00	1.16×10^{6}	1660.00	3307.00	280.00	1540.00	3660.00
preselection	49.47	2462.09	79.11	76.25	38.32	87.22	70.72
Jet energy	47.92	1970.58	77.62	74.98	37.96	72.88	57.28
χ2	44.32	1353.38	64.57	62.41	34.02	61.60	48.16
Visible energy	44.23	1326.19	64.31	62.00	33.92	61.18	47.90
NN for 8 jets	36.51	1011.92	36.37	34.37	16.38	51.59	47.90
NN for ttbar	20.53 (9.85)	302.59	26.44	25.17	13.07	21.71	9.00
b-tagging	14.92 (5.41)	87.54	17.54	16.42	9.13	16.10	6.03