

Discussion of theoretical and parametric uncertainties on the Higgs Branching ratios

Hiroshi Yokoya (Univ. of Toyama)

Disclaimer: I was asked to lead the discussion for the theoretical and parametric uncertainties on Higgs Br's.

> But, because of the lack of my knowledge and preparation, I could only summarize current status on them from published papers.

After the overview, I would like to call for discussion from you.

References:

Carena, Haber, Logan, Mrenna (02);

Droll,Logan(07); Baglio,Djouadi(11);

Denner, Heinemeyer, Puljak, Rebuzzi, Spira(11); 5

LHC Higgs XS WG(13);

Almeida, Lee, Pokorski, Wells (14);

Lepage, Mackenzie, Peskin (14), etc.

ILC coupling measurement accuracy

ILC Higgs White Paper(13)

Expected accuracies of coupling determination at the ILC:

- $\sigma \times BR_i \rightarrow BR_i \rightarrow \Gamma_i \rightarrow g_i \quad [\delta g/g = 1/2 \cdot \delta \Gamma/\Gamma]$ Plenary talk by K.Fujii
- Expected accuracy for each coupling is estimated in model-dependent and model-independent analysis

model dependent

	ILC(250)	ILC(500)	ILC500(LumUp)
\sqrt{s} (GeV)	250	250+500	250+500
$L (fb^{-1})$	250	250 + 500	1150 + 1600
$\gamma\gamma$	17 %	8.3 %	4.4 %
gg	6.1 %	2.0 %	1.1 %
WW	4.7 %	0.4 %	0.3 %
ZZ	0.7 %	0.5 %	0.3 %
$tar{t}$	6.4 %	2.5 %	1.4 %
$b \overline{b}$	4.7 %	1.0 %	0.6 %
$ au^+ au^-$	5.2 %	1.9 %	1.0 %
$\Gamma_T(h)$	9.0 %	1.7 %	1.0 %
$\mu^+\mu^-$	91 %	91 %	42 %
hhh	_	83 %	46 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.4 %
$c\bar{c}$	6.8 %	2.8 %	1.5 %

model independent

	ILC(250)	ILC(500)	ILC500(LumUp)
\sqrt{s} (GeV)	250	250+500	250+500
$L(fb^{-1})$	250	250 + 500	1150 + 1600
$\gamma\gamma$	18 %	8.4 %	4.5 %
gg	6.4 %	2.3 %	1.2 %
WW	4.8 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	0.5 %
$tar{t}$	_	14 %	7.8 %
$bar{b}$	5.3 %	1.6 %	0.8 %
$ au^+ au^-$	5.7 %	2.3 %	1.2 %
$c\bar{c}$	6.8 %	2.8 %	1.5 %
$\mu^+\mu^-$	91 %	91 %	42 %
$\Gamma_T(h)$	12 %	4.9 %	2.5 %
hhh	_	83 %	46 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.4 %

Theoretical Uncertainties

Available H.O. corrections

c.f.: Higgs XS WG report, HDECAY,...

h
$$\rightarrow$$
 ff: QCD N⁴LO; EW O($\alpha^2 m_t^4/m_h^4$)
h \rightarrow gg: QCD N³LO(HQ limit); EW O(α)
h \rightarrow YY: O(α^2 , $\alpha\alpha_s^3$)
h \rightarrow VV \rightarrow 4f: full NLO QCD & EW ,,,

Remaining uncertainties:

EW corrections more serious than QCD

Denner, Heinemeyer, Puljak, Rebuzzi, Spira (11)

		Partial Width	QCD	Electroweak	Total	
	*	${ m H} ightarrow { m bar{b}/car{c}}$	$\sim 0.1\%$	$\sim 1-2\%$ for $M_{\rm H} \lesssim 135{\rm GeV}$	$\sim 2\%$	(1.2%/3%)
	*	$H \to \tau^+ \tau^- / \mu^+ \mu^-$		$\sim 12\%$ for $M_{ m H} \lesssim 135{ m GeV}$	$\sim 2\%$	(2%)
		$H \to t \bar t$	$\lesssim 5\%$	$\lesssim 2-5\%$ for $M_{ m H} < 500{ m GeV}$	$\sim 5\%$	
$\delta_{\rm OCD} < \delta_{\rm EW}$				$\sim 0.1 (\frac{M_{\rm H}}{1 {\rm TeV}})^4 {\rm for} M_{\rm H} > 500 {\rm GeV}$	$\sim510\%$	
QCD EVV		$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3\%$	(2.2%)
		${\rm H} \rightarrow \gamma \gamma$	<1%	< 1%	$\sim 1\%$	
	*	$H \to Z\gamma$	<1%	$\sim 5\%$	$\sim 5\%$	
	*	$\rm H \rightarrow WW/ZZ \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_{ m H} < 500{ m GeV}$	$\sim 0.5\%$	(0.6%)
				$\sim 0.17 (\frac{M_{\rm H}}{1 {\rm TeV}})^4 {\rm for} M_{\rm H} > 500 {\rm GeV}$	$\sim 0.515\%$	

Parametric Uncertainties

PDG2014

$$\begin{cases} \bar{m}_b(\bar{m}_b) = 4.18 \pm 0.03 \text{ [GeV] } (0.7\%) \\ \bar{m}_c(\bar{m}_c) = 1.275 \pm 0.025 \text{ [GeV] } (2\%) \\ \alpha_s(m_Z) = 0.1184 \pm 0.0006 \text{ (0.5\%)} \\ m_h = 125.7 \pm 0.4 \text{ [GeV] } (0.3\%) \end{cases}$$

Parametric uncertainties can be described as

$$\frac{\delta \Gamma_i}{\Gamma_i} = \sum_k \left| \frac{x_k \partial \Gamma_i}{\Gamma_i \partial x_k} \right| \cdot \frac{\delta x_k}{x_k}$$

• Normalized derivative: $\frac{x_j}{\Gamma_k} \frac{\partial \Gamma_k}{\partial x_i}$

	M_b	M_c	$\alpha_s(m_Z)$
Гь	2.5	0	-2.5
Гс	0	3.6	-9.2
Гд	-0.07	0	2.5

Almeida, Lee, Pokorski, Wells (14)

	m _H
Γ _W	13.7
Γ _Z	15.3

Parametric Uncertainties: Current status

$$\frac{\delta \Gamma_b}{\Gamma_b} = \left| 2.5 \frac{\delta \bar{m}_b}{\bar{m}_b} \right| \oplus \left| -2.5 \frac{\delta \alpha_s}{\alpha_s} \right| = |2.5 \cdot 0.7\%| \oplus |-2.5 \cdot 0.5\%| = \frac{3\%}{2}$$
 (1.2%)

$$\frac{\delta \Gamma_c}{\Gamma_c} = \left| 3.6 \frac{\delta \bar{m}_c}{\bar{m}_c} \right| \oplus \left| -9.2 \frac{\delta \alpha_s}{\alpha_s} \right| = |3.6 \cdot 2\%| \oplus |-9.2 \cdot 0.5\%| = \underline{11.8\%}$$
 (3.0%)

$$\frac{\delta\Gamma_g}{\Gamma_g} = \left| 2.5 \frac{\delta\alpha_s}{\alpha_s} \right| = |2.5 \cdot 0.5\%| = 1.3\%$$
(2.2%)

$$\frac{\delta \Gamma_W}{\Gamma_W} = \left| 13.7 \frac{\delta m_h}{m_h} \right| = |13.7 \cdot 0.3\%| = \underline{4.1\%}$$
(0.6%)

$$\frac{\delta \Gamma_Z}{\Gamma_Z} = \left| 15.3 \frac{\delta m_h}{m_h} \right| = |15.3 \cdot 0.3\%| = 4.6\%$$
 (0.6%)

Future precision on Higgs mass

100MeV(0.08%) 30MeV (0.024%) [LHC14] [ILC]

$$\rightarrow$$
 1.1% \rightarrow 0.33%

$$\rightarrow$$
 1.2% \rightarrow 0.37%

Parametric Uncertainties: Future Prospects

Lepage, Mackenzie, Peskin (14): Future development in Lattice calculation improve the uncertainties for quark masses and QCD coupling constant.

$$\begin{cases} m_b(10 \text{ GeV}) = 3.617 \pm 0.025 \text{ [GeV]} \\ m_c(3 \text{ GeV}) = 0.986 \pm 0.006 \text{ [GeV]} \\ \alpha_s(m_Z) = 0.1184 \pm 0.0006 \end{cases}$$

	$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	'	b	I _C	I _g
current errors [10]	0.70	0.63	0.61	[2	2.6%	7.7%	1.6%
· DIT	0.60	0.40	0.94		201	4.00/	1.00/
(one order improvement in P.T.) $+ PT$	0.69	0.40	0.34		2.2%	4.9%	1.0%
(lattice spacing reduce to 0.03fm) $+$ LS	0.30	0.53	0.53	2	2.0%	6.8%	1.3%
(the same but to 0.023fm) $+ LS^2$	0.14	0.35	0.53	1	L.2%	5.1%	0.88%
		0.45		1	1 10/	2 20/	0.420/
+ PT + LS	0.28	0.17	0.21		L.1%	2.3%	0.43%
$+ PT + LS^2$	0.12	0.14	0.20		0.65%	2.0%	0.35%
$+ PT + LS^2 + ST$	0.09	0.08	0.20		0.43%	1.5%	0.20%
ILC goal				(.	1.2%	3%	2.2%)

Summary and discussions:

• To-do list for the higher-order calculations :

```
full two-loop EW corrections to h \rightarrow ff decays, next order in QCD & EW to h \rightarrow gg, NNLO EW corrections to h \rightarrow VV \rightarrow 4f,,,
```

Lattice development for QCD parameter determination

```
are these errors correctly estimated? consistency check by different group? is there correlation on the uncertainties of m_b, m_c and \alpha_s?
```

• Can Higgs mass determination be more accurate at the ILC? it can limit the $\Gamma_{W,Z}$ accuracies, and therefore, κ_V .

