Impact of precision measurements for dark matter constraints

G. Moortgat-Pick (Uni Hamburg/DESY)
In coll. with G. Belanger, A. Bharucha, K. Rolbiecki, G. Weiglein

- Short Intro
- Parameter determination
- Results on DM

Conclusions

In the following

Evaluate $\Omega_{\chi}h^2$ using parameters from $\chi^+_1\chi^-_1$ @NLO:

- Our recent NLO analysis showed precise determination of M_1 , M_2 , $\tan \beta + m_{\text{stop1}}$, $\cos \Theta_t$, M_A possible at LC
- In pMSSM, $\Omega_{\chi}h^2$ requires ΔX_i , i = 1 to 19
- If combining the parameters $\Delta X_i^{LHC/LC}$, what is the precision in $\Omega_\chi h^2$?

Idea

- Convert SUSY measurements into crucial dark matter test
 - Turn LHC+LC measurements into precise SUSY parameters
 - Predict $\Omega_{\rm x}$ h² on basis of parameter determination
- Which precision is sufficient to be competitive with cosmo?
 - Remember Planck2013: $Ω_x h^2 = 0.120 \pm 0.003$
- Which tools and theory level are required for matching?
 - In order to calculate $\Omega_{\chi}h^2$ one requires all SUSY parameters
 - With LHC results: calculate $\Omega_{\chi}h^2$ in CMSSM
 - escape CMSSM exclusions via pMSSM@LC
- Advantages LC:
 - more tools (polarization, threshold scans,ISR method)
 - higher precision (up to quantum level)

Impact from LHC BSM limits

- SUSY: still strongly motivated and beautiful, but
 - so far, no hints of a signal, only rather high exclusion limits in the coloured sector
 - Constrained models (CMSSM,...) + Simpl. Models under tension!

Further hints from theory?

Further SUSY facts

- Low energy experiments, (g-2)_u:
 - favours rather low SUSY masses in electroweak sector:

$$\delta \mathbf{a}_{\mu}(\mathrm{N.P.}) = \mathcal{O}(\mathbf{C}) \left(\frac{\mathbf{m}_{\mu}}{\mathbf{M}} \right)^2, \quad \mathbf{C} = \frac{\delta \mathbf{m}_{\mu}(\mathrm{N.P.})}{\mathbf{m}_{\mu}}$$

- C very model dependent, SUSY/ED ~ $O(\alpha/4\pi ...)$
- LHC results prefer rather heavy coloured sector in 1st +2nd generation
- Way out: rather simple
 - Decouple uncoloured and coloured sector and/or take hybrid models of SUSY breaking
 - Just leave out the constrained minimal models, that's all

Remember: Minimal SUSY contains 105 new parameter... why should nature be too simple?

Why 'should' light SUSY be preferred?

Minimization of 1-loop Higgs Potential:

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -(m_{H_u}^2 + \Sigma_u^u) - \mu^2$$

- To keep EWFT ~ 3%:
 - rather small μ (~200 GeV) required

Papucci,Ruderman,Weiler 2011 Baer,Barger,Huang, Tata, 2012

- 'naturalness'
- Several 'natural' scenarios: light stops and light higgsinos,...

Strategy

- Studied process: e+e- → x+x-
 - Input: measured masses of χ^{\pm} , χ^{0} , via continuum or threshold
 - Measured polarized cross setions at 350 and 500 GeV
 - Measured A_{FB} of this process
- Determine fundamental parameters: M₁, M₂, μ, tanβ
 - Fine, very accurate results …. <% level</p>
 - Predict dark matter contribution
 - Well known: loop corrections in SUSY at same level of accuracy
- Apply / evaluate 'loop' corrected cross sections (and masses)
 - Fit sensitive to heavier virtual particles (m_{stop}, m_A)
 - Parameters in the range of loop-corrected observables

Status DM searches

Bino-Higgsino mixture, Pure Bino needs co-annihilation with other Closest case to the quasi-degenerated SUSY partners WIMP miracle 10⁰ Bino Wino Higgsino Bino-Higgsino Wino-Higgsino Bino-Wino Higgsino, Mixed ~ 1.5 TeV can annihilate 10⁻¹ or Z "funnels" Wino, 2 10-2 J ~ 3 TeV 10⁻³ 10³ 10² $m_{ ilde{\chi}_0}$ (GeV)

Snowmass '13 (Hewett, Rizzo, et al.)

Bino-like that

through the h

Criteria for scenarios

- In the MSSM $\Omega_x h^2$ depends strongly on region
 - $m_{\chi 01} \sim m_{\tau}$ (stau coannihilation) $m_{\chi 01} \sim M_A$ (funnel)

 - $m_{\chi 01} \sim \mu$ (focus point)

We assume:

- Assume light Bino/Wino satisfying unification relations
- Light higgsino satisfying relic density in focus point region
- Light stops, large Af, strong mixing in stop sector: Higgs mass
- Other squarks and gluino heavy due to LHC constraints

Scenarios

- Scenario 1: Focus point region
 - Heavy sleptons (m_{sel} accessible in the fit)
 - Charged Higgs (1TeV) inaccessible: creates uncertainty
- Scenario 2: Hybrid (focus point/bulk) region
 - Light sleptons, accessible at LHC and/or LC(500)
 - Lighter charged Higgs (500 GeV). NLSP is stau₁.
- Scenario 3: Focus point region
 - Same characteristics as above, but adjusting dark matter bound

Impact of stop mixing on light Higgs

MSSM fit, preferred values for stop masses

Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein, Zeune

- Rather large X_t=A_t-μ cot β
- Large stop mixing required
 Best fit prefers heavy stops beyond 1 TeV
 But good fit also for light stops down to ≈300 GeV

LC: Parameters from $e^+e^- \rightarrow \chi^+_{1}\chi^-_{1}$

- In the past: parameter determination at tree level
 - Extracted from $\sigma^{\pm}_{L,R}$ polarized cross sections at \sqrt{s} =350 and 500 GeV, masses m χ^{\pm}_{1} and m χ^{0}_{1} with 500 fb⁻¹

SUSY Parameters			Mass Predictions			
M_1	M_2	μ	$\tan \beta$	$m_{ ilde{\chi}_2^\pm}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}^0_4}$
99.1 ± 0.2	192.7 ± 0.6	352.8 ± 8.9	10.3 ± 1.5	378.8 ± 7.8	359.2 ± 8.6	378.2 ± 8.1

- If even the sleptons masses ('focuspoint') were too heavy, use in addition A_{FR} of final I or q

$$59.45 \le M_1 \le 60.80 \text{ GeV}, \quad 118.6 \le M_2 \le 124.2 \text{ GeV}, \quad 420 \le \mu \le 770 \text{ GeV}$$

 $1900 \le m_{\tilde{\nu}_e} \le 2120 \text{ GeV}, \quad m_{\tilde{e}_L} \ge 1500 \text{ GeV}, \quad 11 \le \tan\beta \le 60.$

Today: incorporate contributions from one-loop

LC: Parameters from $e^+e^- \chi^+_1 \chi^-_1 @NLO$

- However: Loop effects known to be relevant
 - Sensitivity to parameters arising from loops, e.g. stop- and Higgs sector

Bharucha, Kalinowski, GMP, Rolbiecki, Weiglein '12

- But: Strategies for parameter determination still applicable?
 - Known that SUSY loop effects might be large
 - Δσ_{exp} ~ Δσ_{NLO} : apply loop-corrected polarized χ⁺₁χ⁻₁ cross sections at √350 and 500 GeV
 - Apply loop-corrected A_{FB} at both energies
 - Assume masses of $\chi^{\pm}_{1,1} \chi^{\pm}_{2}$, $\chi^{0}_{1,1} \chi^{0}_{2,1} \chi^{0}_{3}$ have been measured
 - via continnum measurement versus via threshold scan
- Apply fit to: M₁, M₂, μ, tanβ, cosΘ_t, m_{t1},m_{t2} and m_{sneu} (M_A)

Scenario 1: Focus point region

Parameter	Scenario A
M_1	$123 \pm 0.3 (0.6)$
M_2	$250 \pm 0.6 (1.6)$
μ	$182 \pm 0.4 (0.7)$
aneta	$10 \pm 0.5 (1.3)$
m_{A^0}	1000 ± 500
M_3	1000 ± 100
$m_{ar{t}_1}$	400 ± 40
$m_{ ilde{t}_2}$	800 ± 80
$\cos \theta_t$	0.46 ± 0.15
$m_{ ilde{b}_1}$	400 ± 40
$\cos \theta_b$	0 ± 0.06
$m_{ ilde{ au}_1}$	403 ± 40
$m_{ ilde{ au}_2}$	801 ± 80
$\cos heta_{ au}$	0 ± 0.02
$M_{q_{1,2}}$	1500 ± 500
$M_{h,a}$	$1500 \pm 24 (20)$
$M_{e_{1,2}}$	1500 ± 500

$$X_1^0 = 0.83B - 0.18W + 0.44h_1 - 0.29h_2$$

- Largest contributions to annihilation cross section:
 - **WW (68%)**
 - **ZZ (12%)**
 - hh (7%)
 - Zh (6%)

Scenario 1: Focus point region

Parameter	Scenario A
M_1	$123 \pm 0.3 (0.6)$
M_2	$250 \pm 0.6 (1.6)$
μ	$182 \pm 0.4 (0.7)$
$tan \beta$	$10 \pm 0.5 (1.3)$
m_{A^0}	1000 ± 500
M_3	1000 ± 100
$m_{ar{t}_1}$	400 ± 40
$m_{ ilde{t}_2}$	800 ± 80
$\cos \theta_t$	0.46 ± 0.15
$m_{ ilde{b}_1}$	400 ± 40
$\cos \theta_b$	0 ± 0.06
$m_{ ilde{ au}_1}$	403 ± 40
$m_{ ilde{ au}_2}$	801 ± 80
$\cos heta_{ au}$	0 ± 0.02
$M_{q_{1,2}}$	1500 ± 500
$M_{h,a}$	1500 ± 24 (20)
$M_{e_{1,2}}$	1500 ± 500

- Obtain fundamental parameters at % level
- Results depend on accuracy of measured masses:
 - If threshold scans used: additional access to stop masses/mixing
 - Analyze uncertainty on relic density

Scenario 2: Hybrid (focus point/bulk) region

	_
Parameter	Scenario B
\mathcal{M}_1	105 ± 0.3
M_2	211 ± 0.5
μ	181 ± 0.4
aneta	11 ± 0.3
$m_{\mathcal{A}^0}$	500 ± 150
M_3	1500 ± 150
$m_{ar{t}_1}$	430 ± 43
$m_{ ilde{ t t}_2}$	1520^{+200}_{-300}
$\cos \theta_t$	$0.15^{+0.08}_{-0.06}$
$m_{ ilde{b}_1}$	450 ± 45
$\cos \theta_b$	0 ± 0.01
$m_{ ilde{ au}_1}$	105.1 ± 0.3
$m_{ ilde{ au}_2}$	$191.3^{+14.6}_{-8.6}$
$\cos heta_ au$	0.29 ± 0.14
$M_{q_{1,2}}$	1500 ± 500
$M_{l_{1,2}}$	180 ± 40
$M_{e_{1,2}}$	125 ± 5

$$X_{1}^{0} = 0.87B - 0.18W + 0.41h_{1} - 0.23h_{2}$$

- Largest contributions to annihilation cross section:
 - WW (24%)
 - Stau stau (23%)
 - μ+μ- (10%)
 - e+e- (8%)
 - bb(7%)

Scenario 2: Hybrid (focus point/bulk) region

Parameter	Scenario B
\mathcal{M}_1	105 ± 0.3
M_2	211 ± 0.5
μ	181 ± 0.4
aneta	11 ± 0.3
$m_{\mathcal{A}^0}$	500 ± 150
M_3	1500 ± 150
$m_{ar{t}_1}$	430 ± 43
$m_{ ilde{t}_2}$	1520^{+200}_{-300}
$\cos \theta_t$	$0.15^{+0.08}_{-0.06}$
$m_{ ilde{b}_1}$	450 ± 45
$\cos \theta_b$	0 ± 0.01
$m_{ ilde{ au}_1}$	105.1 ± 0.3
$m_{ ilde{ au}_2}$	$191.3^{+14.6}_{-8.6}$
$\cos heta_ au$	0.29 ± 0.14
$M_{q_{1,2}}$	1500 ± 500
$M_{l_{1,2}}$	180 ± 40
$M_{e_{1,2}}$	125 ± 5

- Obtain fundamental parameters at % level
- Not only electroweakinos but also sleptons accessible

Scenario 2: Hybrid (focus point/bulk) region

	_	•
Parameter	Scenario	В
\mathcal{M}_1	105 ± 0	0.3
M_2	211 ± 0).5
μ	181 ± 0	0.4
aneta	11 ± 0	0.3
$m_{\mathcal{A}^0}$	500 ± 1	50
M_3	1500 ± 1	50
$m_{ar{t}_1}$	430 ± 4	43
$m_{ ilde{t}_2}$	1520^{+2}_{-3}	000 800
$\cos \theta_t$	0.15^{+0}_{-0}	.08
$m_{ ilde{b}_1}$	$450 \pm$	45
$\cos \theta_b$	$0\pm0.$	01
$m_{ ilde{ au}_1}$	105.1 ± 0	
$m_{ ilde{ au}_2}$	191.3^{+14}_{-8}	4.6 .6
$\cos heta_ au$	$0.29 \pm 0.$	14
$M_{q_{1,2}}$	1500 ± 5	00
$M_{l_{1,2}}$	180 ± 1	40
$M_{e_{1,2}}$	125 ±	5

Effect of stau precision measurement at the LC

Scenario 3: Focus point region (Planck update)

	<u> </u>
M_1	146 ± 0.4
M_2	250 ± 1.1
μ	360 ± 0.7
tan	5.8 ± 1.4
m_{A^0}	326 ± 3
M_3	2000 ± 500
$m_{ ilde{t}_1}$	991 ± 100
$m_{ ilde{t}_2}$	3012 ± 500
$\cos \ell$ -	-0.32 ± 0.15
$m_{ ilde{b}_1}$	1000 ± 100
$\cos t$	0 ± 0.06
$m_{ ilde{ au}_1}$	2000 ± 500
$m_{ ilde{ au}_2}$	2000 ± 500
$\cos t$	0 ± 0.02
$M_{q_{1,}}$	2000 ± 500
$M_{l_1, \cdot}$	2000 ± 500
$M_{e_{1,}}$	2000 ± 500

- Obtain fundamental parameters at % level
- Not only electroweakinos but also sleptons accessible
- Largest contributions to annihilation cross section:
 - bb (~78%)
 - I+I- (~10%)
 - hh (~4%)
 - − Zh (~3%)
 - − WW(~3%)
- Sensitivity to effects of virtual particles, here:
 M_A

Due to Loops: impact of M_A on $\Omega_\chi h^2$

- Assume Δm_A=0.8 GeV
 - ILC white paper: 0.45-0.73 GeV achievable at 800 GeV with 500 fb⁻¹

Blue area: uncertainty in $\Omega_{\chi}h^2$ due to parametric uncertainties

Bharucha '14

ightharpoonup Parametric uncertainties cause about 10% error in prediction of $\Omega_{
m y} h^2$

Conclusions

- Precise predictions ~10% (due to parametric uncertainties) for $\Omega_\chi^{h^2}$ possible via SUSY parameter determination at LC+LHC
- Strategy for parameter determination without assuming a SUSY breaking scheme even at loop level seems applicable:
 - NLO parameter determination up to O(%) level at a LC via (χ^0, χ^{\pm}) production (only light spectrum)
- Extract parameters M_1 , M_2 , μ , $\tan \beta$, m_{stop1} , and $\cos \Theta_t$ via fit to NLO predictions for masses, polarized σ 's and A_{FB}
- Crucial role: tunable energy, threshold scans, polarization
- Sensitive to heavy virtual particles M_A etc. via loop effects