Impact of precision measurements for dark matter constraints G. Moortgat-Pick (Uni Hamburg/DESY) In coll. with G. Belanger, A. Bharucha, K. Rolbiecki, G. Weiglein - Short Intro - Parameter determination - Results on DM Conclusions # In the following #### Evaluate $\Omega_{\chi}h^2$ using parameters from $\chi^+_1\chi^-_1$ @NLO: - Our recent NLO analysis showed precise determination of M_1 , M_2 , $\tan \beta + m_{\text{stop1}}$, $\cos \Theta_t$, M_A possible at LC - In pMSSM, $\Omega_{\chi}h^2$ requires ΔX_i , i = 1 to 19 - If combining the parameters $\Delta X_i^{LHC/LC}$, what is the precision in $\Omega_\chi h^2$? #### Idea - Convert SUSY measurements into crucial dark matter test - Turn LHC+LC measurements into precise SUSY parameters - Predict $\Omega_{\rm x}$ h² on basis of parameter determination - Which precision is sufficient to be competitive with cosmo? - Remember Planck2013: $Ω_x h^2 = 0.120 \pm 0.003$ - Which tools and theory level are required for matching? - In order to calculate $\Omega_{\chi}h^2$ one requires all SUSY parameters - With LHC results: calculate $\Omega_{\chi}h^2$ in CMSSM - escape CMSSM exclusions via pMSSM@LC - Advantages LC: - more tools (polarization, threshold scans,ISR method) - higher precision (up to quantum level) # Impact from LHC BSM limits - SUSY: still strongly motivated and beautiful, but - so far, no hints of a signal, only rather high exclusion limits in the coloured sector - Constrained models (CMSSM,...) + Simpl. Models under tension! Further hints from theory? #### **Further SUSY facts** - Low energy experiments, (g-2)_u: - favours rather low SUSY masses in electroweak sector: $$\delta \mathbf{a}_{\mu}(\mathrm{N.P.}) = \mathcal{O}(\mathbf{C}) \left(\frac{\mathbf{m}_{\mu}}{\mathbf{M}} \right)^2, \quad \mathbf{C} = \frac{\delta \mathbf{m}_{\mu}(\mathrm{N.P.})}{\mathbf{m}_{\mu}}$$ - C very model dependent, SUSY/ED ~ $O(\alpha/4\pi ...)$ - LHC results prefer rather heavy coloured sector in 1st +2nd generation - Way out: rather simple - Decouple uncoloured and coloured sector and/or take hybrid models of SUSY breaking - Just leave out the constrained minimal models, that's all Remember: Minimal SUSY contains 105 new parameter... why should nature be too simple? # Why 'should' light SUSY be preferred? Minimization of 1-loop Higgs Potential: $$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -(m_{H_u}^2 + \Sigma_u^u) - \mu^2$$ - To keep EWFT ~ 3%: - rather small μ (~200 GeV) required Papucci,Ruderman,Weiler 2011 Baer,Barger,Huang, Tata, 2012 - 'naturalness' - Several 'natural' scenarios: light stops and light higgsinos,... # Strategy - Studied process: e+e- → x+x- - Input: measured masses of χ^{\pm} , χ^{0} , via continuum or threshold - Measured polarized cross setions at 350 and 500 GeV - Measured A_{FB} of this process - Determine fundamental parameters: M₁, M₂, μ, tanβ - Fine, very accurate results …. <% level</p> - Predict dark matter contribution - Well known: loop corrections in SUSY at same level of accuracy - Apply / evaluate 'loop' corrected cross sections (and masses) - Fit sensitive to heavier virtual particles (m_{stop}, m_A) - Parameters in the range of loop-corrected observables ## Status DM searches Bino-Higgsino mixture, Pure Bino needs co-annihilation with other Closest case to the quasi-degenerated SUSY partners WIMP miracle 10⁰ Bino Wino Higgsino Bino-Higgsino Wino-Higgsino Bino-Wino Higgsino, Mixed ~ 1.5 TeV can annihilate 10⁻¹ or Z "funnels" Wino, 2 10-2 J ~ 3 TeV 10⁻³ 10³ 10² $m_{ ilde{\chi}_0}$ (GeV) Snowmass '13 (Hewett, Rizzo, et al.) Bino-like that through the h ### Criteria for scenarios - In the MSSM $\Omega_x h^2$ depends strongly on region - $m_{\chi 01} \sim m_{\tau}$ (stau coannihilation) $m_{\chi 01} \sim M_A$ (funnel) - $m_{\chi 01} \sim \mu$ (focus point) #### We assume: - Assume light Bino/Wino satisfying unification relations - Light higgsino satisfying relic density in focus point region - Light stops, large Af, strong mixing in stop sector: Higgs mass - Other squarks and gluino heavy due to LHC constraints ## Scenarios - Scenario 1: Focus point region - Heavy sleptons (m_{sel} accessible in the fit) - Charged Higgs (1TeV) inaccessible: creates uncertainty - Scenario 2: Hybrid (focus point/bulk) region - Light sleptons, accessible at LHC and/or LC(500) - Lighter charged Higgs (500 GeV). NLSP is stau₁. - Scenario 3: Focus point region - Same characteristics as above, but adjusting dark matter bound ## Impact of stop mixing on light Higgs MSSM fit, preferred values for stop masses Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein, Zeune - Rather large X_t=A_t-μ cot β - Large stop mixing required Best fit prefers heavy stops beyond 1 TeV But good fit also for light stops down to ≈300 GeV ## LC: Parameters from $e^+e^- \rightarrow \chi^+_{1}\chi^-_{1}$ - In the past: parameter determination at tree level - Extracted from $\sigma^{\pm}_{L,R}$ polarized cross sections at \sqrt{s} =350 and 500 GeV, masses m χ^{\pm}_{1} and m χ^{0}_{1} with 500 fb⁻¹ | SUSY Parameters | | | Mass Predictions | | | | |-----------------|-----------------|-----------------|------------------|-------------------------|-----------------------|-----------------------| | M_1 | M_2 | μ | $\tan \beta$ | $m_{ ilde{\chi}_2^\pm}$ | $m_{ ilde{\chi}^0_3}$ | $m_{ ilde{\chi}^0_4}$ | | 99.1 ± 0.2 | 192.7 ± 0.6 | 352.8 ± 8.9 | 10.3 ± 1.5 | 378.8 ± 7.8 | 359.2 ± 8.6 | 378.2 ± 8.1 | - If even the sleptons masses ('focuspoint') were too heavy, use in addition A_{FR} of final I or q $$59.45 \le M_1 \le 60.80 \text{ GeV}, \quad 118.6 \le M_2 \le 124.2 \text{ GeV}, \quad 420 \le \mu \le 770 \text{ GeV}$$ $1900 \le m_{\tilde{\nu}_e} \le 2120 \text{ GeV}, \quad m_{\tilde{e}_L} \ge 1500 \text{ GeV}, \quad 11 \le \tan\beta \le 60.$ Today: incorporate contributions from one-loop ## LC: Parameters from $e^+e^- \chi^+_1 \chi^-_1 @NLO$ - However: Loop effects known to be relevant - Sensitivity to parameters arising from loops, e.g. stop- and Higgs sector Bharucha, Kalinowski, GMP, Rolbiecki, Weiglein '12 - But: Strategies for parameter determination still applicable? - Known that SUSY loop effects might be large - Δσ_{exp} ~ Δσ_{NLO} : apply loop-corrected polarized χ⁺₁χ⁻₁ cross sections at √350 and 500 GeV - Apply loop-corrected A_{FB} at both energies - Assume masses of $\chi^{\pm}_{1,1} \chi^{\pm}_{2}$, $\chi^{0}_{1,1} \chi^{0}_{2,1} \chi^{0}_{3}$ have been measured - via continnum measurement versus via threshold scan - Apply fit to: M₁, M₂, μ, tanβ, cosΘ_t, m_{t1},m_{t2} and m_{sneu} (M_A) #### Scenario 1: Focus point region | Parameter | Scenario A | |--------------------|----------------------| | M_1 | $123 \pm 0.3 (0.6)$ | | M_2 | $250 \pm 0.6 (1.6)$ | | μ | $182 \pm 0.4 (0.7)$ | | aneta | $10 \pm 0.5 (1.3)$ | | m_{A^0} | 1000 ± 500 | | M_3 | 1000 ± 100 | | $m_{ar{t}_1}$ | 400 ± 40 | | $m_{ ilde{t}_2}$ | 800 ± 80 | | $\cos \theta_t$ | 0.46 ± 0.15 | | $m_{ ilde{b}_1}$ | 400 ± 40 | | $\cos \theta_b$ | 0 ± 0.06 | | $m_{ ilde{ au}_1}$ | 403 ± 40 | | $m_{ ilde{ au}_2}$ | 801 ± 80 | | $\cos heta_{ au}$ | 0 ± 0.02 | | $M_{q_{1,2}}$ | 1500 ± 500 | | $M_{h,a}$ | $1500 \pm 24 (20)$ | | $M_{e_{1,2}}$ | 1500 ± 500 | $$X_1^0 = 0.83B - 0.18W + 0.44h_1 - 0.29h_2$$ - Largest contributions to annihilation cross section: - **WW (68%)** - **ZZ (12%)** - hh (7%) - Zh (6%) #### Scenario 1: Focus point region | Parameter | Scenario A | |--------------------|----------------------| | M_1 | $123 \pm 0.3 (0.6)$ | | M_2 | $250 \pm 0.6 (1.6)$ | | μ | $182 \pm 0.4 (0.7)$ | | $tan \beta$ | $10 \pm 0.5 (1.3)$ | | m_{A^0} | 1000 ± 500 | | M_3 | 1000 ± 100 | | $m_{ar{t}_1}$ | 400 ± 40 | | $m_{ ilde{t}_2}$ | 800 ± 80 | | $\cos \theta_t$ | 0.46 ± 0.15 | | $m_{ ilde{b}_1}$ | 400 ± 40 | | $\cos \theta_b$ | 0 ± 0.06 | | $m_{ ilde{ au}_1}$ | 403 ± 40 | | $m_{ ilde{ au}_2}$ | 801 ± 80 | | $\cos heta_{ au}$ | 0 ± 0.02 | | $M_{q_{1,2}}$ | 1500 ± 500 | | $M_{h,a}$ | 1500 ± 24 (20) | | $M_{e_{1,2}}$ | 1500 ± 500 | - Obtain fundamental parameters at % level - Results depend on accuracy of measured masses: - If threshold scans used: additional access to stop masses/mixing - Analyze uncertainty on relic density #### Scenario 2: Hybrid (focus point/bulk) region | | _ | |---------------------|------------------------| | Parameter | Scenario B | | \mathcal{M}_1 | 105 ± 0.3 | | M_2 | 211 ± 0.5 | | μ | 181 ± 0.4 | | aneta | 11 ± 0.3 | | $m_{\mathcal{A}^0}$ | 500 ± 150 | | M_3 | 1500 ± 150 | | $m_{ar{t}_1}$ | 430 ± 43 | | $m_{ ilde{ t t}_2}$ | 1520^{+200}_{-300} | | $\cos \theta_t$ | $0.15^{+0.08}_{-0.06}$ | | $m_{ ilde{b}_1}$ | 450 ± 45 | | $\cos \theta_b$ | 0 ± 0.01 | | $m_{ ilde{ au}_1}$ | 105.1 ± 0.3 | | $m_{ ilde{ au}_2}$ | $191.3^{+14.6}_{-8.6}$ | | $\cos heta_ au$ | 0.29 ± 0.14 | | $M_{q_{1,2}}$ | 1500 ± 500 | | $M_{l_{1,2}}$ | 180 ± 40 | | $M_{e_{1,2}}$ | 125 ± 5 | $$X_{1}^{0} = 0.87B - 0.18W + 0.41h_{1} - 0.23h_{2}$$ - Largest contributions to annihilation cross section: - WW (24%) - Stau stau (23%) - μ+μ- (10%) - e+e- (8%) - bb(7%) #### Scenario 2: Hybrid (focus point/bulk) region | Parameter | Scenario B | |---------------------|------------------------| | \mathcal{M}_1 | 105 ± 0.3 | | M_2 | 211 ± 0.5 | | μ | 181 ± 0.4 | | aneta | 11 ± 0.3 | | $m_{\mathcal{A}^0}$ | 500 ± 150 | | M_3 | 1500 ± 150 | | $m_{ar{t}_1}$ | 430 ± 43 | | $m_{ ilde{t}_2}$ | 1520^{+200}_{-300} | | $\cos \theta_t$ | $0.15^{+0.08}_{-0.06}$ | | $m_{ ilde{b}_1}$ | 450 ± 45 | | $\cos \theta_b$ | 0 ± 0.01 | | $m_{ ilde{ au}_1}$ | 105.1 ± 0.3 | | $m_{ ilde{ au}_2}$ | $191.3^{+14.6}_{-8.6}$ | | $\cos heta_ au$ | 0.29 ± 0.14 | | $M_{q_{1,2}}$ | 1500 ± 500 | | $M_{l_{1,2}}$ | 180 ± 40 | | $M_{e_{1,2}}$ | 125 ± 5 | - Obtain fundamental parameters at % level - Not only electroweakinos but also sleptons accessible #### Scenario 2: Hybrid (focus point/bulk) region | | _ | • | |---------------------|--------------------|------------| | Parameter | Scenario | В | | \mathcal{M}_1 | 105 ± 0 | 0.3 | | M_2 | 211 ± 0 |).5 | | μ | 181 ± 0 | 0.4 | | aneta | 11 ± 0 | 0.3 | | $m_{\mathcal{A}^0}$ | 500 ± 1 | 50 | | M_3 | 1500 ± 1 | 50 | | $m_{ar{t}_1}$ | 430 ± 4 | 43 | | $m_{ ilde{t}_2}$ | 1520^{+2}_{-3} | 000
800 | | $\cos \theta_t$ | 0.15^{+0}_{-0} | .08 | | $m_{ ilde{b}_1}$ | $450 \pm$ | 45 | | $\cos \theta_b$ | $0\pm0.$ | 01 | | $m_{ ilde{ au}_1}$ | 105.1 ± 0 | | | $m_{ ilde{ au}_2}$ | 191.3^{+14}_{-8} | 4.6
.6 | | $\cos heta_ au$ | $0.29 \pm 0.$ | 14 | | $M_{q_{1,2}}$ | 1500 ± 5 | 00 | | $M_{l_{1,2}}$ | 180 ± 1 | 40 | | $M_{e_{1,2}}$ | 125 ± | 5 | | | | | #### Effect of stau precision measurement at the LC Scenario 3: Focus point region (Planck update) | | <u> </u> | |--------------------|------------------| | M_1 | 146 ± 0.4 | | M_2 | 250 ± 1.1 | | μ | 360 ± 0.7 | | tan | 5.8 ± 1.4 | | m_{A^0} | 326 ± 3 | | M_3 | 2000 ± 500 | | $m_{ ilde{t}_1}$ | 991 ± 100 | | $m_{ ilde{t}_2}$ | 3012 ± 500 | | $\cos \ell$ - | -0.32 ± 0.15 | | $m_{ ilde{b}_1}$ | 1000 ± 100 | | $\cos t$ | 0 ± 0.06 | | $m_{ ilde{ au}_1}$ | 2000 ± 500 | | $m_{ ilde{ au}_2}$ | 2000 ± 500 | | $\cos t$ | 0 ± 0.02 | | $M_{q_{1,}}$ | 2000 ± 500 | | $M_{l_1, \cdot}$ | 2000 ± 500 | | $M_{e_{1,}}$ | 2000 ± 500 | - Obtain fundamental parameters at % level - Not only electroweakinos but also sleptons accessible - Largest contributions to annihilation cross section: - bb (~78%) - I+I- (~10%) - hh (~4%) - − Zh (~3%) - − WW(~3%) - Sensitivity to effects of virtual particles, here: M_A # Due to Loops: impact of M_A on $\Omega_\chi h^2$ - Assume Δm_A=0.8 GeV - ILC white paper: 0.45-0.73 GeV achievable at 800 GeV with 500 fb⁻¹ Blue area: uncertainty in $\Omega_{\chi}h^2$ due to parametric uncertainties Bharucha '14 ightharpoonup Parametric uncertainties cause about 10% error in prediction of $\Omega_{ m y} h^2$ #### Conclusions - Precise predictions ~10% (due to parametric uncertainties) for $\Omega_\chi^{h^2}$ possible via SUSY parameter determination at LC+LHC - Strategy for parameter determination without assuming a SUSY breaking scheme even at loop level seems applicable: - NLO parameter determination up to O(%) level at a LC via (χ^0, χ^{\pm}) production (only light spectrum) - Extract parameters M_1 , M_2 , μ , $\tan \beta$, m_{stop1} , and $\cos \Theta_t$ via fit to NLO predictions for masses, polarized σ 's and A_{FB} - Crucial role: tunable energy, threshold scans, polarization - Sensitive to heavy virtual particles M_A etc. via loop effects