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Introduction and motivations

Extended full Si tracker:
Implementation
Performance results

Brief comparison between full and LDT (Linear collider Detector
Toy) fast simulation

Inhomogeneous B field
Implementation
Performance results and software limitations

Plans for a new tracking code
ILD vertex code and cellular automaton
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Excellent tracking performance is essential for the CLIC physics program
Particle flow measurement

CDR tracking resolution goal: o(Ap;)/p;%~ 2:107° GeV-1
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Inhomogeneous B field causes distortion in particle trajectories
Study the impact on performance
Mapping of the B field
Implementation in the
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Implementation
Performance results
Comparison between fast and full simulation

EXTENDED TRACKER GEOMETRY
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Single p, p = 10, 100, 500 GeV
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Implementation & B field map
Results with current fit model and code
Plans for a new tracking software

INHOMOGENEOUS B FIELD
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1) Geometry definition: compact.xml + o i
GeomConverter -
] —4.7
- Non-homogeneous B field introduced by a A - 46
map with position coordinates and field values § | as
o 1 a4
o — 4.3
=X 42
main tracker region 41

2) Simulation: SLIC (based on Geant4 2> % 02 04 06 08 1 12 14 16 °
interaction of particle in matter) >

9% variation 2 [m]

- Tracker hits are simulated according the
non-homogeneous B field

3) Reconstruction: LCSim (at the moment)

- Homogeneous B field (value at the IP): 20 0.05
- need to move from the global helical fit: . main tracker region
work on going for the tracking software 02 04 06 08 1
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Geometry used:

(CLIC_SiD with reduced endcaps)
Degradation in reco efficiency and bias in
the p; reco due to the

2 In CLIC_SiD extrapolation and fit

o In ATLAS use of
(Runge-Kutta)
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Similar conclusion: bias in d, resolution due to reconstruction bias
z, not affected (see backup)
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Global helical model:
Homogeneous B
Circumference in r¢ plane
Straight line in Sz plane
5 parameters (k, do, 20, Po, tan)

Wlse-sggmented helix: layer (k + 1) transform_— helix (k + 1)
Helix from layer to layer (homo B) L, a’(updated by filter)

At every measurement update the B
field and the reference frame

Impose a “sufficient” number of these

steps (not only on measurement plane)  &er (%)
Kalman filter implementation arXiv:1305.7300v2
soft-pub-2007-005 Runge-Kutta based extrapolator:
d’r q [dr dr General method, any assumption about B
ds? :\ P [% % B(r)] }+ 9(p,r) = Solve second order differential equation of
Y l, motion to compute the intersection of the

. trajectory with the destination plane
Lorentz force energy loss function



Current SiD tracking software has shown
some limitations for our user case:

No implementation of Kalman filter
(important for low p; tracks)

Global helical tracking extrapolator
ILD software SiliconTracking MarlinTrk
has shown poor performance in terms of
efficiency when the TPC is not included

Kalman filter implemented (KalDet/KelTest)
Promising performance

Accounts for double layers

Extend to the full Si tracker

Interface to DD4hep (now use of gear file)
Study the case of B decay

from R. Glattauer’s thesis
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Extended tracker geometry implemented in simulation:
0 performance w.r.t. CDR
o Upto in
- On going implementation also in DD4hep (M. Frank, N. Nikiforou, A. Sailer)

Results with realistic B field with homogeneous B assumption in reco:
0 in the tracking in the forward region (6>30°)

0 - assumption of
homogeneous B (helix) in the reconstruction

- Confident of restoring good performance considering inhomogeneous B in reco

Start working on a new tracking software:
o Starting point: based on cellular automaton
- Work just started!

Thanks for your attention!
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Some discrepancies observed between LCSim CDR, LCSim 2.5, LCSim
2.8 for the tracking performance (agreement with Nilou’s studies):

(used for DBD):

= ~20% worsening of the momentum resolution

= improvements in the pull distributions (better estimation of the uncertainties)
and less theta dependence

(“Norman’s patch”)
= restore of CDR performance but dO resolution = 10% worsening at p=10GeV
= worsening again in the pull distributions

- probably attempt to restore as much as possible CDR without removing the
changes introduced for the HPS

Plan to migrate to a new tracking code
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FROM ATLAS NOTE soft-pub-2007-005: track
(A. Salzburger)

«* Measurement

ﬁ Predicted track parameters

Figure 1: Simplified illustration of a typical extrapolation process within a Kalman filter step. The track
representation on the detector module 1 is propagated onto the next measurement surface, which results
in the track prediction on module 2. The traversing of the material layer between the two modules causes
an increase of the track direction uncertainties and thus — by correlation — an increased uncertainty of
the predicted track parameters. In the Kalman filter formalism, the weighted mean between prediction and
associated measurement build the updated measurement which builds the start point for the next filter step;
this leads to the illustrated non-continuous track model.



FROM C. GREFE’S THESIS:

(b) Sz plane

starting point Py = (g, Yo, 20)

do = /75 + 45

k B
PT = —

I
Px = PT COS ¢y,
Py = PT Singy,
pZ:pT tan/l’
p = PT :pT\/1+tan2/l,

cos A

K
q=—.

I



FROM ILD NOTE arXiv:1305.7300v2:
(Bo Li, Keisuke Fujii, Yuanning Gao)

Z 144
A z
;_6
7
y 77
—— o~y
Z T Ok+1|// 275
‘k — _:—_‘___—_‘_<_~'_‘_‘_-_—_- ;; — =~ = > X !
0/'/ \\ -
X"
7 Adk
y
V% - X
Ok

Figure 4: Transformation from one frame to the next. The # and ¢ angles
are determined by the magnetic field directions at the position Oy and Oy 1.



Table 2.1.: The different criteria available in the KiTrack package
(The time is given relative to the fastest criterion)

FROM R. Glattauer’s THESIS

name

‘ hits ‘ time ‘ description

DeltaRho

2

1.00

The difference of the distances to the z-axis:
Ap =153 +y3 — /ol + i}

IPCircleDist

1.30

From the 3 hits a circle is calculated in the
z-y plane and the distance of the IP to this cir-
cle is measured.

RZRatio

1.00

The distance of two hits divided by their z-

V Az2+Ay2+Az2

distance: T~

StraightTrackRatio

1.04

Best suited for straight tracks: if the line be-
tween the two hits points towards IP. Calcu-
lated is £+/22, where p = /2? + y2. Is equal to
1 for completely straight tracks.

IPCircleDistTimesR

1.30

Distance of the IP to the circle multiplied with
the radius of the circle to take into account
higher deviations for low transversal momentum
tracks.

DistOfCircleCenters

1.66

Circles are calculated for the first and last 3
hits. The distance of their centers is measured.

RChange

1.66

The coefficient of the radii of the two circles.

DeltaPhi

1.30

The difference between the ¢ angles of two
hits in degrees. ¢ is the azimuthal angle in
the z-y plane w.r.t. the positive x axis: ¢ =
atan2(y, x).

DistToExtrapolation

2.21

From the first 3 hits the relation of a to Az is
calculated. This is used to predict z and y of the
fourth hit for the given z-value. The distance of
this prediction to the actual position in x and
y is measured.

HelixWithIP

1.43

Checks if two hits are compatible with a helix
through the IP. A circle is calculated from the
two hits and the IP. Let « be the angle between
the center of the circle and two hits. For a per-
fect helix 1> should be equal for all pairs of hits
on the helix. The coefficients for the first and
last two hits (including the IP) are compared:
L /2. This is 1 for a perfect helix around

Az Azz:
the z-axis.

NoZigZag

2.30

A criterion to sort out tracks that make a zig
zag movement. The 2-D angles are measured
for the first and the last three hits. Then they
are transposed to the area of —7 to m and mul-
tiplied. A zig-zagging track would give angles
with different signs and therefore a negative
multiplication result.

2DAngleChange

2.30

The coefficient of the 2-D angles.

3DAngleChange

~

241

The coefficient of the 3-D angles.

ChangeRZRatio

1.23

The coefficient of the RZRatio values for the
two 2-hit-segments. Ideally this would equal 1.

PhiZRatioChange

2.50

The coefficient of the PhiZRatio of the first 3
and the last 3 hits.

2DAngle

1.23

The angle between two 2-hit-segments in the
z-y plane.

2DAngleTimesR

1.46

The 2DAngle, but multiplied with the radius
of the circle the segments form, in order to get
better values for low momentum tracks.

3DAngle

1.25

The angle between two 2-hit-segments.

3DAngleTimesR

w

1.48

3DAngle times the radius of the circle.

PT

1.30

The transversal momentum as calculated from
a circle in the z-y plane. This criterion includes
knowledge about the magnetic field and in this
way differs from the rest. A more basic version
would be to either use the radius of the circle or
its inverse (2. Using pr was chosen for reasons
of readability.
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Comparison with CMS

® NNSYS

JUN 4 2014

-2.081
-1.304
-.52808
.248331
1.025
1.801
2597/
3.354

4.13

~3%

[ ANSYS

JUN 4 2014

=l @ile

-1.222

-.624166

-.026669

.570828

1.168

1.766

2363

Rosa Simoniello — LCWS14

Thanks to Benoit Cure
and Nicola Amapane

CMS accurate study of field in
the yoke (arxiv:0910.5530)

Field inside the tracker region
pretty homo (long solenoid)
2 Main inhomo from non-

symmetry in z (different
number of spires in the coil)

Tracker field mapped with an
accuracy <0.1% =» important
for physical analysis:

2 measurements of track
parameters near the
interaction vertex

2 to limit bias in the
momentum scale (w.r.t. the
momentum resolution)

| cws | cuic_sip.

B [T] 3.8 5.0
L[m] 12.5 6.4
R[m] 3.0 5.4

25



FROM ATLAS NOTE . -
soft-pub-2007-005: ,/_ f|_,/-J L
(A. Salzburger)
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~40% non-homo of B in the z direction
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The first plot shows the ¢-dependency of

the magnetic field at different radii in steps of 100 millimeter at z = 0: the homogeneity of the field in the
ID is broken in radial and azimuthal direction even in the very central part of the solenoid. The second plot
shows the magnitude of the magnetic field shown within a quarter of the Inner Detector.



