

Status of Cornell SRF R&D

Fumio Furuta Cornell University

LCWS14 Belgrade 8Oct2014

F. Furuta, Cornell SRF R&D status, LCWS14 Belgrade

LCLS-II high-Q work at Cornell

where the second

F. Furuta, Cornell SRF R&D status, LCWS14 Belgrade

Milestones

Milestone	Target date	Actual date completed
Begin single-cell cavity fabrication	17 Feb 2014	17 Feb 2014
Singe-cell cavity set complete	28 Mar 2014	26 Mar 2014
Initial single cell parametric study complete (5 individual cavities/ 10 tests)	20 Jun 2014	10 July 2014
N-treatment protocol ready for 9-cell	30 Jun 2014	7 July 2014
Final single cell parametric study complete (8 tests)	30 Sep 2014	
Receive 2 as-fabricated 9-cell cavities from FNAL	21 Mar 2014	19 Mar 2014
Receive 2 as-fabricated 9-cell cavities from FNAL	4 Apr 2014	10 Apr 2014
Test of two 9-cell cavities complete	13 Jun 2014	7 July 2014
Test of two additional 9-cell cavities complete	5 Sep 2014	23 Aug 2014
Receive 2 as-fabricated 9-cell cavities from FNAL	18 Aug 2014	28 July 2014
Test of two additional 9-cell cavities complete	14 Nov 2014	18 Sept 2014
First HTC test complete (ACC012)	31 Jul 2014	31 July 2014
Second HTC test complete (ACC011)	23 Sep 2014	3 Oct 2014
Third HTC test complete	14 Nov 2014	

N-doped cavity preparation

- Surface prep. ; Bulk VEP(120um) + Degas + N-dope + light VEP
- 1st study on single cell: same N-treatment (800C; 20 min in N₂ followed by 30 min in vacuum), but different final VEP amounts

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

N-doped single-cell VT results at 2K

N-doped Single cell analysis

Decreasing BCS resistance results in anti-Q slope.

Courtesy of Dan Gonnella

N-doped 9-cell VT results at 2K

N-doped 9-cell VT summary

N-Doped 9-cell	1 st Pass *	2 nd Pass **	Qo at 16MV/m, 2K	Quench	Status
AES018	Done	Done (post re-VEP)	2.3E10 (2 nd) 3.2E10 (3 rd)	28MV/m 21MV/m	FE Quench
AES022	Done	Done (post re-HPR)	2.0E10 (1 st) 3.4E10 (2 nd)	24MV/m 17MV/m	FE Quench
AES023	Done	Done (post re-VEP)	3.4E10 (1 st) 3.0E10 (2 nd)	14MV/m <mark>16MV/m</mark>	Quench <mark>Quench</mark>
AES029	Done		2.7E10	15MV/m	
AES030	Done	Planed next week	2.7E10	17MV/m	Cold leak at 1.8K, re- test after HPR

* 1st Pass; VT after bulk VEP + N2-dope + light VEP.

** 2nd Pass; VT after re-HPR or additional light VEP.

HF treated 9-cell	1 st Pass *	2 nd Pass **	Qo at 16MV/m, 2K	Quench	Status
AES025	Done		1.9E10	33MV/m	FE limit

* 1st Pass; VT after bulk BCP + 850C bake + light VEP + 120C bake + HF rinse.

T-map meas. during fast cool

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) Cornell HTC Test on N-doped 9-cell

HTC Test #1, fast/slow cool effect

HTC Test #1 Summary, ACC012

Title	Cool down	Results
Initial cool down	~0.5K/min, dT~2.5K (below 25K)	Low field Q meas.,2.6e10 at 5MV/m. Calibrations accomplished.
1 st thermal cycle	Warm up to 15K Fast cool from 15K, ~5K/min, dT~5K	FE conditioning in 8/9pi-mode. Eacc=14MV/m, Qo=2.5e10 at 2K (post quench and conditioning).
2 nd thermal cycle	Warm up to 25K Fast cool from 20K, ~7K/min, dT~3K	Eacc=14MV/m, Qo=2.8e10 at 2K. Quench degraded Qo from 2.8e10 to 2.5e10 at 2K.
3 rd thermal cycle	Warm up to 35K Slow cool from 20K, ~0.04K/min. dT~0.3K	Eacc=14MV/m, Qo=2.5e10 at 2K.
4 th thermal cycle	Warm up to 300K Fast cool from 100K, dT~20K near Tc	Eacc=14MV/m, Qo=3.2e10 at 2K. Qo=8e10 at 1.6K, Rres~2nOhm.

HTC Test #1, 2nd and 3rd thermal cycle

2nd Thermal cycle

- fast cool from 20K
- ~7K/min near Tc
- ~3K gradient over cavity

3rd Thermal cycle

- slow cool from 20K
- ~0.04K/min near Tc
- ~0.3K gradient over cavity

Warmed up to 300K, fast cool from 100K ~20K gradient over cavity near Tc.

HTC Test #2, Q vs. Eacc at 2K

- 1st cool-down: fast in low ambient magnetic field
 - Max dT/dt=1.2 K/min, Max ΔT=6.3 K, ~2 mG
- 2nd cool-down: fast in low ambient magnetic field with somewhat larger temperature gradients over the cavity
 - Max dT/dt=1.3 K/min, Max ΔT=8.9 K, ~2 mG
- **3**rd **cool-down:** fast in high ambient magnetic field produced by solenoid around the cavity
 - Max dT/dt=1.3 K/min, Max Δ T=7.0 K, B_{applied}~10 mG
- 4th cool-down: slow in high ambient magnetic field produced by solenoid around the cavity
 - ~0.1 K/min (data not completely analyzed), B_{applied}~10 mG
- Additional cool down and test is on going.

Summary on LCLS-II work

Single cell achievement.

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

- All 5 single cells (LT1-1~5) successfully achieved and exceeded LCLS-II specs. in 1st VT, no additional process was needed.
- Q₀ > 3E10 at 2K, 16 MV/m for wide range of final VEP removal (5 to 30 μm). Ave. Qo at 16MV/m, 2K is (3.7±0.6)E10.
- Quench fields of 18 to 33 MV/m.
- Established highly reliable High-Q recipe with VEP+N2-dope
- Decreasing BCS resistance results in anti-Q slope.
- □ Un-dressed 9-cells achievement.
 - 5 N-doped 9-cells have been tested successfully and achieved LCLS-II specs., Average Qo is 3.0E10 at 16MV/m, 2K. Quench at 21MV/m.
 - Demonstrated availability of VEP for high-Q 9-cell prep.
- Dressed 9-cells achievements in HTC.
 - 1st HTC test on ACC012 exceeds intrinsic quality factor specification in cryomodule for the first time., Qo is 3.2E10 at 14MV/m, quench at 14MV/m.
 - Fast cool down with temp. gradient of ~20K near Tc gave best results with Q~3.2e10 at 2 K and 8e10 at 1.6 K (~2 nOhms of residual) during 1st HTC test.
 - 2nd HTC test on ACC011 is on going, Qo of 2.6E+10 at 16MV/m, 2K has achieved so far.

Cornell ERL Main Linac Cryomodule

the section of the se

F. Furuta, Cornell SRF R&D status, LCWS14 Belgrade

Cornell ERL 7-cell and MLC

ERL 7cell surface preparations

- 1. Fabrication
- 2. Bulk BCP (140um)
- 3. Degassing (650C*4days)
- 4. Freq. and flatness Tuning
- 5. light BCP (10um)
- 6. 120C*48hrs bake
- 7. HF rinse
- 8. VT w/ T-map
- 9. He vessel welding, final mach shie
- **10. String assembly**

Cavity specification values in vertical test dewar

- Eacc=16.2MV/m
- Qo=2.0e10 at 1.8K

Image of Cornell ERL Main Linac Cryomodule

7-cell VT results at 1.8K

Processes and VT summary of 7-cell

	ERL7-2(a)	ERL7-3	ERL7-4	ERL7-5	ERL7-6	ERL7-7	
	Un-stiffened cavity			Stiffened cavity			
Bulk BCP (target removal)	80±5 um <mark>(80)</mark>	138±5 um <mark>(140)</mark>	132±7 um <mark>(140)</mark>	114±8 um <mark>(120)</mark>	132±5 um <mark>(140)</mark>	118±5 um <mark>(120)</mark>	
Degassing	TM-furnace 650C*1days 850C*3days	TM-furnace 650C*4days	TM-furnace 650C*4days	TM-furnace 650C*4days	TM-furnace 650C*4days	TM-furnace 650C*4days	
Post tuning, flatness and cavity length	97% 1160.80mm	91% 1163.56 mm	92% 1162.09 mm	94% 1158.35 mm	94% 1159.06 mm	94% 1159.31 mm	
light BCP	10 um	10 um	10 um	10 um	10 um	10 um	
120C bake	TM-furnace	TM-furnace	TM-furnace	TM-furnace	TM-furnace	On insert	
HF rinse	Yes	Yes	Yes	Yes	Yes	Yes	
Additional Mag. shield on cavity during VT	Yes	Νο	Νο	Νο	Yes	Yes	
1 st VT	Achieved specs.	FE limit	Achieved specs.	Achieved specs.	Achieved specs.	Achieved specs.	
2 nd VT		Achieved specs.					
Qo at 16.2MV/m, 1.8K (design=2.0e10)	3.37e10	2.90e10	2.45e10	2.70e10	3.10e10	3.04e10	
Final Results at 1.8K	18MV/m 3.34e10	17MV/m 2.8e10	17.4MV/m 2.4e10	18.3MV/m 2.6e10	17MV/m 3e10	17.8MV/m 2.95e10	

Notes; * all data shown on table were taken with fast cool, no He vessel on cavity.

* ERL7-3 was re-processed with light BCP +120C bake +HF rinse before 2nd VT.

* some cavities were measured again after He vessel welding.

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Cavity on VT insert

w/ additional mag. shield

R&D on fast/slow cool VT

Fast cool; dT over cavity ~100K near Tc. Slow cool; dT over cavity ~0.1K near Tc.

Slow cool gave higher Qo than fast cool during VT of 7-cells.

T-map meas. Durign VT

An example of 7-cell T-map data ERL 7-5, Eacc=17MV/m, Qo=1.7e10, at 2K. Courtesy of Mingqi Ge

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

String and cold mass assembly

MLC assembly

Summary on Cornell ERL MLC

- The Cornell ERL 7-cell cavities for Main Linac Cryomodule, six 7-cells in total, had been fabricated, processed, and tested in CLASSE vertical test dewar.
- All cavities have surpassed the specification values of Eacc=16.2MV/m w/ Qo of 2.0e10 at 1.8K. Achieved Qo during vertical test were much higher than specs, the average of Qo is almost 3e10 at 1.8K.
- Through these 7-cell VTs, we have successfully demonstrated our high reliability of fabrication, high reproducibility of processes, and high yield of the results.
- MLC assembly is on going, cold mass was slid into vac. bessel last week.

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)