

IHEP ILC Test Cryomodule Status

Jiyuan Zhai

On behalf of the ILC SRF R&D team of IHEP

2014 International Workshop on Future Linear Colliders (LCWS14)
6-10 October 2014, Belgrade, Serbia

Outline

- Cavity clean room assembly
- Cryomodule assembly
- 80 K cooling down test
- other SRF R&D

IHEP ILC Test Cryomodule

Clean Room Assembly Preparation

Particle Free Flange Assembly

Gate Valve Assembly

Wrong assembly of the gate valve seat side.

Leak rate will be higher.

Cleanness OK.

Allowable differential pressure 2 bar in either direction.

Coupler Cold Part Assembly

Clean Room Assembly

3 m long beamline (large grain low-loss 1.3 GHz 9-cell cavity)

Two-phase pipe weld and leak check

HOM Coupler Notch Filter Tuning

Cavity in Vacuum

Frequency 1297.521 MHz Input coupler side $Q_e = 2E12$ (this HOM can cap very soft) Field probe side $Q_e = 3.8E12$

Use TM010 passband modes to fit the notch filter frequency (linear near the notch)

Cavity in module iso. vac. (He vessel air) at RT

Frequency 1297.570 MHz

Input coupler side $Q_e = 7.5E9$

Field probe side $Q_e = 1.5E11$

Cavity cool down to 80 K (He vessel 1 atm)

Frequency 1299.945 MHz

Input coupler side $Q_e = 2E12$ (?)

Field probe side $Q_e = 2E11$

Tuner Assembly

- After pre-tuning in air: 1297.480 MHz
- After vertical test, cavity in vacuum (free): 1297.439 MHz
- After helium vessel weld: 1297.269 MHz (cavity in vacuum, too low)
- After tuner assembly and add spacer: 1297.521 MHz (1 mm stretch, 64 kg piezo pre-load when hanging on the GRP)

Cryogenic motor
Motor current lead too
thin for 1 A current!
Piezo load sensor

Encapsulated piezo stack and round head to avoid shearing force

Displacement sensor

Camera and light in the module to monitor the gear

Motor magnetic shield

13

Cavity ready to install to cryomodule

Cavity Hang on GRP

Spring screws (washers)

Needle bearings, shells, housings, gauges

Cavity Alignment

- Cavity axis 2 mm lower than design for vertical thermal shrink
- Cavity axis 0.25 mm lateral offset to opposite coupler side to compensate different material shrinkage
- Spring washer (SW) tight 6 Nm, then untight upper SW ¼ turn (0.25 mm), untight lateral SW (coupler side) ¾ turn (0.75 mm)

Cold Mass Assembly

Thermal anchors

Pre-cooling line

Magnetic shield cap

Tuner and piezo test and preload

Cold Mass Assembly

HOM coupler and feedthrough thermal anchors

2K, 5K, 80K cryogenic lines leak check

Thermometers and cables

5 K Thermal Shield and Multi-layer Isolation

5K and 80K Shield

Due to lack of welding operation space, 5 K lower shield screwed to the 5K upper shield and Omega pipe; 80 K shield TIG weld

80 K Shield and Multi-layer Isolation

Due to thick beam pipe, we connect the beam tube 5K thermal anchor to the 80K shield to prevent frost.

Cold Mass to Vacuum Vessel, Alignment

Coupler Warm Part and Doorknob Assembly

Cryogenic, Vacuum and Signal Connection

LN₂ 80K Cool Down Test

Vacuum and Temperature Reach

- Cavity and coupler cold window cooled to 80 K (< 40 K/h), cavity vacuum 4E-5 Pa (small ion pump), coupler vacuum 5E-6 Pa.
- Some thermometers did not work
- Due to leak of the cryogenic line connection, outgassing and small pumping rate, isolation vacuum was only 1~10 Pa after cooling down. Thus, 5 K and 80 K shield reached 140 K at lowest.
- We will solve the isolation vacuum leak problem and do 80 K cool down test again in November.
- 2 K high power horizontal test next year (cryo-plant OK, klystron deliver early next year)

Cavity and Tuner

- Cav. vac. HV vac. iso vac. BT air: 1297.570 MHz (1297.521 MHz for HV&iso air)
- Cav. vac. HV air. iso vac. BT vac.: 1298.431 MHz
 - df = +861 kHz, dL = +2.9 mm, tuner roller and taper block detached
 - HV ID 230 mm, 415 kg atm force => 143 kg/mm, similar to piezo load sensor measurement: 133 kg/mm (cavity very soft)
- Cool down to 80 K, helium vessel and cavity shrink 1.4 mm, tuner gap 1.5 mm.
 Cav. 1300.335 MHz (HV 1 atm). When 2 K (HV 30 torr), cavity will be shorter.
- After warm up. Cav. vac. HV air. iso air. BT vac.: 1297.785 MHz
 Cav. vac. HV air. iso air. BT air.: 1297.9 MHz (permanent elongation 1.3 mm)
- Tuner stretch 1.2 mm, then touch the cavity. Piezo test.
- If cool down to 2 K: 1297.9 + 2.43 (RT=>4K & iso.vac.) 0.83 (4K=>2K pump down) + 0.5 (tuner stretch 1.6 mm) = 1300 MHz

Piezo Test at RT

Piezo pressure 38 kg, offset 400 V, scan ± 200 V

Other SRF R&D

- Fine grain TESLA-like 9-cell cavity (IHEP-03)
 - Dumbbells and end groups welding done
 - Dumbbell equator welding test ongoing. Blowing holes sometimes due to fit-up variation of the step mating
- Other SRF R&D Plan (ILC and CEPC)
 - TESLA 9-cell cavity by HE-racing company (IHEP workshop)
 - 1.3 GHz 9-cell cavity will be used for CEPC booster (256 cavities, 5 GeV RF voltage) and possible for injector linac (289 cavities, 6 GeV)
 - CW 20 MV/m, Q₀ > 2E10 (nitrogen-doping) => high Q₀ at medium E_{acc}
 - Gradient could be > 30 MV/m if without Q drop => high Q_0 at high E_{acc}
 - R&D on thin film (Nb₃Sn) of usable gradient and high Q₀ at 4.2 K
 - Extensive development of SRF key technology, personnel, infrastructure and industrialization needed in 2016-2020 for CEPC.
 Make most use of ILC technology and synergy with ILC.

Thank you