International Workshop on Future Linear Colliders 2014

Status of the CLIC Phase Feedforward Prototype at CTF3

Jack Roberts

Piotr Skowroński, Alexandra Andersson (CERN)
Andrea Ghigo, Fabio Marcellini (INFN/LNF Frascati)
Philip Burrows, Glenn Christian, Colin Perry (JAI/Oxford U.)
Alexander Gerbershagen, Jack Roberts (JAI/Oxford U./CERN)
Emmanouil Ikarios (NTU Athens/CERN)

Overview

- Motivation for a phase feedforward system at CLIC.
- Design of the phase feedforward prototype at CTF3.
- Phase feedforward hardware (phase monitors, kickers, amplifiers and digital processor).
- Optics for the phase feedforward system.
- Results from slow phase feedback tests.

Motivation for Phase Feedforward

- CLIC luminosity quickly drops if the RF phase jitters.
- Expected drive beam phase stability: 2.5 degrees of 12GHz (drive beam bunch frequency).
- Required drive beam phase stability: <0.2 degrees of 12GHz.

CLIC Phase Feedforward Scheme

- 4 bend C-shaped chicane after each turnaround prior to drive beam power extraction.
- Measure phase prior to each turnaround.
- Correct the phase by kicking the beam on to shorter/longer trajectories through the chicane.
- Feedforward correct same "bunch" that was originally measured (system latency < beam time of flight through turnaround).

Phase Feedforward Challenges

- Major hardware challenge: bandwidth, power, resolution and latency of the components.
- CLIC CDR (optimal target):
 - Correction: 50 MHz bandwidth, 0.2 degrees of 12 GHz resolution
 - Monitors: 100 MHz bandwidth, 0.1 degrees of 12 GHz resolution.
 - Amplifier: 70 MHz bandwidth, 500 kW peak power.
 - Each Kicker: 500 kW peak power for 375 µrad kick.
- Prototype in the final stages of installation at the CLIC test facility CTF3 at CERN to prove feasibility.

Phase Feedforward Prototype at CTF3

- Correction in the pre-existing four bend dog leg chicane in TL2.
 - 3 phase monitors (INFN Frascati)
 - 2 kickers (INFN Frascati)
 - Amplifiers
 - Digital processor (JAI Oxford)

Current status: all hardware tested, phase feedforward tests to

commence soon.

Phase Monitors (INFN Frascati)

- 12 GHz RF pickups using a choke mode cavity.
- Output RF mixed with 12 GHz reference LO.
- Three monitors installed late 2012 but two damaged.
 - Showed 0.2° of 12 GHz resolution, linearity within $\pm 70^{\circ}$, bandwidth of at least 10 MHz.
 - See Skowronski, WEOBB203, IPAC13 for details.
- Two new monitors with revised design installed last month.
 - First data taken last week, initial results look promising.

Digital Processor (JAI, Oxford University)

- The brain of the system: Digitises the phase monitor signals, calculates the necessary correction and drives the kicker amplifiers.
- A custom digitiser and feed-forward controller based around a Xilinx Virtex-5 FPGA.
 - 9 analogue input channels.
 - Digitisation using 14-bit 400 MS/s ADCs.
 - 4 analogue output channels, using 14-bit 210 MHz DACs.
- Successful tests of digitising phase monitor signals and driving the amplifiers.
 - Implemented IIR filter to correct droop in ADC response due to AC coupling of the input transformers.

Amplifiers (JAI, Oxford University)

- 1.2 kV Cree SiC FETs driven by LV IxysRF Si FETs
- Nominal 18 kW output power per module (~65 kW combined)
- Output bandwidth: > 50 MHz (60 MHz expected), although slew-rate limited (reduced bandwidth for large change in output)

- First two modules (one per kicker) available in June for initial tests.
 - 345 V output.
 - Design output of each module 600 V (additional FETs will be added to reach design output).
 - Full 1.2 kV from four modules (per kicker) combined.

Kickers (INFN Frascati)

- Strip-line kickers based on the DAFNE design.
- Strip length 960 mm, aperture 20 mm.

- 1.1 kV for 1 mrad deflection at 125 MeV.
 - At least 50 kW drive needed
- The kickers have been integrated in to the TL2 chicane.
- Kickers powered with amplifier for first time in June.

Latency

- Beam time of flight (first phase monitor to first kicker): 380 ns.
- Kicker cable lengths: ~40 m or 210 ns (at 0.67c)
- Remaining budget: 170 ns.
- Original latency estimates:
 - Phase monitors (cables + electronics): 50 ns
 - Digital processor: ~70 ns
 - Amplifier: ~35 ns
 - Total: 155 ns

- Comparison of timing between beam induced signal from the kickers and the amplifier drive signal, a latency deficit of around 8 ns was identified.
- Kicker cables (for first kicker) now rerouted shortened by ~6 m or ~30 ns.

Optics Requirements

- The lattice of the pre-existing TL2 chicane had to be rearranged to accommodate the phase feedforward kickers.
- In addition, the phase feedforward system places new optics constraints.
- R_{52} defines the maximum phase correction possible: R_{52} = 1 m means a 1 mrad kick gives a 1 mm path length change (~15° of 12 GHz).
- Compromise: Large R₅₂ vs. Small Dispersion.

R12 = 0: Orbit after correction unchanged

|R22| = 1: Kick amplitudes equal.

- Dispersion amplitude below 2m.
- Dispersion closed at chicane exit.
- Smooth transverse optics.
- Small R₅₆, adjustable.
- R₅₂ as large as possible.
- $R_{12} = 0$ from kicker to kicker.
- $|R_{22}| = 1$ from kicker to kicker.

NOMINAL

<u>PHASE</u> FEEDFORWARD

Proposed Optics

- R52 = -0.7 (10 degree correction range).
- Orbit bump closed for kicked orbits.
- Maximum dispersion 1.2m.
- Betas below 35m.

Model Corrections

- Transmission could not be achieved with nominal optics from MADX model.
- Took extensive set of response matrix measurements to identify errors in the model.
- Two major changes:
 - Error of 7% in strength of one type of quadrupole.
 - Large errors in dipole focusing effects.
- Corrected model: mean position offset reduced from 3.0 \pm 0.7 mm to 0.2 \pm 0.1 mm.

Slow Phase Feedback

- A slow phase feedback will be used at CTF3 to prevent slow drifts outside the limited (10 degree) range of the feedforward system.
- It works in the same way as the feedforward system but uses two
 magnetic correctors installed in the chicane instead of the
 feedforward kickers.
- Slow feedback tests in June verified the performance of the optics and the ability to shift the phase in the TL2 chicane.

Slow Phase Feedback

Pulse No. 63 to 158

- Phase of beam shifted in steps of 10 degrees.
- Phase after chicane (downstream monitor) is brought back to nominal after the (20 pulse) averaging time of the slow feedback.
- Mean downstream phase offset of $13.0^{\circ} \pm 2.0^{\circ}$ reduced to $-0.2^{\circ} \pm 0.8^{\circ}$

Summary

- CLIC requires a high bandwidth phase feedforward system to reduce the drive beam phase jitter by an order of magnitude, down to below 0.2 degrees of 12 GHz.
- A prototype of the system is in the final stages of commissioning:
 - Verified 0.2 degree resolution of phase monitors.
 - First stage (345 V) amplifier tested. Upgraded (600 V) amplifier will soon be available prior to the ultimate 1.2 kV design amplifier.
 - Rectified major errors in the MADX model of the correction chicane.
 - Beam response to feedforward kickers in agreement with the MADX model.
 - Slow feedback tests demonstrate the ability to correct the phase in the chicane.
- Phase feedforward tests will commence very soon!