PRELIMINARY RESULTS FROM THE TEST BEAM OF TWO ADRIANO PROTOTYPES FOR ILC

Corrado Gatto (INFN)

On behalf of

T1015 Collaboration

T1015 Collaboration at FNAL (32 Members)

Institution	Collaborator	
	Diego Cauz	
INFN Trieste/Udine and University of Udine	Anna Driutti	
	Giovanni Pauletta	
	Lorenzo Santi	
	Walter Bonvicini	
	Aldo Penzo	
	Erik Ramberg	
	Paul Rubinov	
	Eileen Hahan	
	Anna Pla	
	Greg Sellberg	
Fermilab	Donatella Torretta	
	Hans Wenzel	
	Gene Fisk	
	Aria Soha	
	Anna Mazzacane	
	Benedetto Di Ruzza (now at BNL)	
	Corrado Gatto	
	Vito di Benedetto	
INFN Lecce	Antonio Licciulli	
HVIIV Eccco	Massimo Di Giulio	
	Daniela Manno	
	Antonio Serra	
INFN and University	Maurizio Iori	
Roma I	Wadiizio 1011	
	Michele Guida	
University of Salerno	NEITZERT Heinrich Christoph	
	SCAGLIONE Antonio	
	CHIADINI Francesco	

Fermilab + INFN Collaboration

ADRIANO: A Dual-Readout Integrally Active Non-segmented Option

ADRIANO

2014

ADRIANO: A Dual-Readout Integrally Active Non-segmented Option

- Absorber and Čherenkov radiator: 10 grooved lead glass plates ($\rho = 5.6$ gr/cm³) 6.5mm x10mm x1050 mm readout by 8 or 6 WLS fibers
- Cerenkov light collection: WLS fiber optically coupled to glass
- Scintillation region ADRIANO 2014A: 10 scintillating plates, 2mm x 10mmx1000mm, readout by 6 WLS
- Scintillation region ADRIANO 2014B: scintillating fibers, dia. 1mm, pitch 3.9 mm (total 200/cell) optically separated from glass
- Readout: Hamamatsu 647 PMT's and SiPM from BKF and STM
- CoG z-measurement: time division applied to SCSF81J fibers or glass (readout with 3.2 Gsa/s digitizer)
- Small $tg(\theta_{S/Q})$: due to WLS running longitudinally to cell axis ($\theta_{Cerenkov} < \theta_{Snell}$ for slower hadrons).
 - Fully modular structure
 - 2-D with longitudinal shower CoG via light division techniques

Rationale Behind ADRIANO Project

1. Dual-readout calorimeter

- Compensation evt-by-evt \longrightarrow smaller σ_E/E
- $\sigma_{\rm E}/{\rm E} \propto 1/\sqrt{\rm E}$
- Particle ID (from S vs Č)
- $\sim 10^5$ channels for typical 4π detectors
- Can be calibrated with e- only

2. Integrally active

- No passive absorber (glass + scintillating plastics)
- It works as <u>EM</u> and <u>Hadronic</u> calorimeter at the same time

Rationale Behind ADRIANO Project (cont'd)

- Scintillating and Cerenkov light in OPTICALLY SEPARATED MEDIA: ->non-homogeneous detector
 - Use the absorber as Cerenkov component of dual-readout
 - Use scintillating fibers for the second component
 - Control the scintillation/Cerenkov with appropriate pitch between bers

Separation efficiency between S & Č components

Hydrogen in plastic important element for neutron

DREAM Scintillator signal (GeV)

Report form DREAM

Collaboration

Rationale Behind ADRIANO Project (cont'd)

Use heavy glasses rather than crystals

	Glass	Crystals	
Light production mechanism	Only Cerenkov (minor fluorescence with some SF glasses)	Cerenkov + scintillation	
Stability vs ambiental (temperature, humidity, etc)	Excellent	Varies, but generally poor	
Stability vs purity	Very good if optical transmittance is OK	Very poor	
Longitudinal size	Up to 2m	20-30 cm max	
Cost	0.4-0.8 EUR/cm ³	10-100 EUR/ cm ³	
Time response	prompt	Slow to very slow (with exceptions)	
n _d	1.85-2.0 (commercilly available) 2.25 (experimental)	1.85-2.3	
Density	6.6 gr/cm ³ (commercially available) 7.5 gr/cm ³ (experimental)	Up to 8-9 gr/cm ³	
Radiation hardness	Medium (recoverable via UV annealing for Pb-glass) or unknown (for Bi-glass)	varies	

- Glasses are amourphous rather than lattice structured
- Čherenkov light yield is high: need smart way to capture it

ADRIANO Simulations in ILCroot

Integrally Active with Double side readout (ADRIANO) Pitch [mm²] 2x2 3x3 5x5 4x4 6x6 4x4 4x4 4x4 Diameter 1_{mm} 1_{mm} 1mm 1mm 1_{mm} 1.4mm 2_{mm} capillry <pe</GeV> 1053 430 254 163 124 500 110 250 <pe_C/GeV> 355 340 360 355 355 350 350 360

Baseline configuration
Active area/total detector surface = 8%

From Dual to Triple Readout

Disentangling neutron component from waveform

ILCroot simulations

ADRIANO in Triple Readout configuration

$$\sigma_E / E = 28\% / \sqrt{E} \oplus 1\%$$

Compare to ADRIANO in Double Readout configuration

$$\sigma_E / E = 33\% / \sqrt{E} \oplus 2\%$$

Baseline configuration
Active area/total detector surface = 8%

ADRIANO EM Resolution (with and without instrumental effects)

- Compare standard Dual-readout method vs Čherenkov signal only (after electron-ID)
- Blue curve includes instrumental effects. Red curve is for perfect readout

Using Čerenkov signal only for EM showers gives 5%/√E energy resolution while full fledged dual-readout gives only 19%/√E (including FEE effects)

ADRIANO does not need a front EM section

If Čerenkov ligth yield is large enough

Particle ID with ADRIANO

T1015 R&D Program

- Seven test beam at FTBF by the summer 2014: 15 ADRIANO prototypes of different sizes and configurations. One test beam in November 2014
- 4 glass type: lead and bismuth based + scintillating Ce doped glass
- 4 glass coatings: TiO2, Silver paint, clear acrylic, BaSO₄
- 3 WLS fibers: Y11 (1.2mm) & BCF92 (1.0, 1.2 mm)
- 1 Scintillating fiber: SCSF81
- 1 scintillating plate: 2mm thick extruded (thinnest ever extruded)
- 4 scifi coating: TiO2, BasO4, Silver paint, Al sputter
- Several optical glues (mostly homemade)
- Many photodetectors: SiPM (IRST, STM, round, square, etc.) & 3 PMT (P30CW5, R647, H3165)
- 4 light coupling systems: direct glass + direct WLS + 4 light concentrators

Goals are:

- Maximize light yield (Cerenkov)
- Measure parameters for Montecarlo simulations
- •Hopefully test the dual-readout concept (size limited)

ADRIANO 2014

Detector construction

Detector assembly

ADRIANO 2014

ADRIANO 2014

2014 Test Beam Setup at FTBF

Waveforms from TB4 DAQ (FTBF)

PMT's and SiPM Calibration

PMT Calibration

SiPM Calibration

UV based fast LED with fast pulser Fit with Bellettini et al. function Spurious pulse – 1 pe Fit with 2 gaussians + poisson

$$(\text{Gaus}((x-x_0)/C_{ADC}, 0., \sigma_0) * Q_0 + \sum_{i=1}^n \text{Poisson}(i, \mu) * \text{Gaus}((x-x_0)/C_{ADC}, i*Q_1/C_{ADC}, \sqrt{i*\sigma_1/C_{ADC}})) * Q_{\text{sign}} + \text{Const*e}^{\text{Slope*x}})$$

Energy scan with electrons

ADRIANO 2014A

Electrons selected with Cherenkov systems at FTBF

Energy scan with electrons

ADRIANO 2014B

Electrons
 selected with
 Cherenkov
 systems at FTBF

Horizontal scan with mixed beam $(e/\pi/\mu)$: ADRIANO 201B

Lateral leakage

Readout from glass appears to be not uniform.

Further investigations are required

Hadrons vs EM showers: ADRIANO 2014 B

Hadrons scatter plots showers: ADRIANO 2014A and 2014B

ADRIANO 2014A

ADRIANO 2014B

Vertical Scan with Protons: ADRIANO 2014B top half vs bottom half

Position resolution with light COG < 1 cm

Detector Response

	ADRIANO 2014A	ADRIANO 2014B
Scintillation L.Y.	1000 pe/GeV	450 pe/GeV
Cherenkov L.Y.	300 pe/GeV	350 pe/GeV
% scint. energy	6.0% @ 4 GeV	1.14%
% Cher. energy	94% @ 4 GeV	98.86% @ 4 GeV
% visible energy	89.7% @ 4 GeV	89.7% @ 4 GeV
Scint. pe/deposited energy [MeV]	0.215 GeV@ 4gev Or 18 pe/MeV	0.041 GeV@ 4gev or 44 pe/ MeV
Cher. pe/deposited energy [MeV]	3.37 GeV@ 4gev Or 0.36 pe/MeV	3.52 GeV@ 4gev Or 0.4 pe/MeV

Light yield goals achieved!

15 Prototypes tested: Performance Summary

Prototype	Year	Glass	gr/cm³	L. Y./GeV	Notes
5 slices, machine grooved, unpolished, white	2011	Schott SF57HHT	5.6	82	SiPM readout
5 slices, machine grooved, unpolished, white, v2	2011	Schott SF57HHT	5.6	84	SiPM readout
5 slices, precision molded, unpolished, coated	2011	Schott SF57HHT	5.6	55	15 cm long
2 slices, ungrooved, unpolished, white wrap	2011	Ohara BBH1	6.6	65	Bismuth glass
5 slices, scifi silver coated, grooved, clear, unpolished	2011	Schott SF57HHT	5.6	64	15 cm long
5 slices, scifi white coated, grooved, clear, unpolished	2011	Schott SF57HHT	5.6	120	
2 slices, plain, white wrap	2011	Ohara	7.5	-	DAQ problem
10 slices, white, ungrooved, polished	2012	Ohara PBH56	5.4	30	DAQ problems
10 slices, white, ungrooved, polished	2012	Schott SF57HHT	5.6	76	
5 slices, wifi Al sputter, grooved, clear, polished	2012	Schott SF57HHT	5.6	30	2 wls/groove
5 slices, white wrap, ungrooved, polished	2012	Schott SF57HHT	5.6	158	Small wls groove
ORKA barrel	2013	Schott SF57	5.6	In prog.	BCF92
ORKA endcaps	2013	Schott SF57	5.6	In prog.	BCF92
10 slices – 6.2 mm thick, scifi version	2014B	Schott SF57	5.6	350	molded
10 slices – 6.2 mm thick, sci-plate version	2014A	Schott SF57	5.6	300	molded

Analysys is still ongoing, all L.Y. results subject to change

New Glasses R&D in T1015

- Research mostly carried at Department of Materials and Environmental Engineering at Uni-Modena (Italy)
- Heavy glasses with no-Pb (Cerenkov only)
 - Mostly Bi based (heavier, less environmental issues, higher n_D, lower softening point for molding)
 - WO₂ under study (just purchased a 1600 °C furnace)
 - Goal is >8 gr/cm³
- Rare earths doped scintillating heavy glasses:
 - Ba-Bi-B matrix to accomodate Ce₂O_{3:}
 - Density achieved up to now: 7.5 gr/cm³ (see next slide)
 - Several rare earth oxides tested: Dy₂O₃ promising
 - Lithium content for neutron sensitivity

Bismuth Borate Glasses BiB-G

Goal High density glasses by melt quench method

■ Two compositions (BiBG20 and BiBG55) with different Bi₂O₃ content

DENSITY

Glass	ρ (g/cm ³)
BiBG 20	4.57
BiBG 55	7.48

 $exp.error \pm 0.01$

Transmission Spectra

thickness c.a 0.3 cm

thickness c.a 0.3 cm

450

650

wavelength (nm)

850

0.5

250

Rare Earth Heavy Glasses

- Rare earths oxides + Ho_2O_3 + $ZnO + P_2O_5 + B_2O_3 + SiO_2$
- R.e. considered: CeO₂, Dy₂O₃, Nd₂O₃, Pr₆O₁₁, Er₂O₃

Conclusions & Future Prospects

- T1015 started operation in 2010. Expected to conclude in 2015.
- 15 detectors succesfully built and tested. 1 under construction.
- We have mastered the technique of collecting light from glass with WLS fibers: 360 pe/GeV reached with ADRIANO 2014B.
- Cerenkov ligth yield more than adequate for 25-30%/sqrt(E)
 calorimetry. We have shown that it can be used for EM calorimetry
 as well
- COG technique gives an effective granularity of about 1 cm²

What's next:

- LDRD proposal in praparation on Organically Doped Scintillating Glasses (A. Mazzacane et. al)
- New proposal to INFN on new glass technologies for HEP:
 - ADRIANO2 (Cerenkov + <u>scintillating glass</u>)
 - ADRIANO in triple readout mode
- Two new prototypes already planned:
 - ADRIANO 2014C (lead glass + <u>scintillating fibers ribbon</u>)
 - ADRIANO 2015 (z-readout)

Under construction

Backup Slides

Adding the 3rd Dimension info with light division methods

- Determine Center of Gravity of showers by ratio of front vs back scintillation light
- It works because $\lambda_{811} = 3.5 \text{ m}$
- Similar to charge division methods in drift chambers with resistive wires
- A technique already adopted by UA1 and ZEUSS

100 Gev pions

Instrumental effects included in ILCroot:

- SiPM with ENF=1.016
- Fiber non-uniformity response = 0.6% (scaled from CHORUS)
- Threashold = 3 pe (SiPM dark current < 50 kHz)
- ADC with 14 bits
- Constant 1 pe noise.

ILCroot simulations

Leakage in 180 cm long *ADRIANO* module

Uncorrected Cerenkov signal

Applying leakage corrections from CoG measured with a light division

(#pe_si front + #pe_si back) versus (#pe_si front - #pe_si back) / (#pe_si front + #pe_si back) profile

Corrected scintillating signal

ILCroot simulations

5000

100 Gev pions

Particle Identification in Dual Readout calorimeters

45 GeV particles

Identifying EM Showers in ADRIANO

- Use Q₂₀ fibers and (S-Q)/(S+Q) to disentangle EM particles from hadrons
- Use E_{Cerenkov} from heavy glass ONLY for EM showers

Calibration à la DREAM

 \bullet E_S and E_C for electron beam is equivalent to pion beam when fem=1

Step 1

$$\begin{cases} E_{S} = \left[fem + \frac{(1 - fem)}{\eta_{S}}\right] \cdot E_{HCAL} \\ E_{C} = \left[fem + \frac{(1 - fem)}{\eta_{C}}\right] \cdot E_{HCAL} \end{cases}$$

for electrons
$$\begin{cases} E_{\it S} = E_{\it HCAL} \\ \\ E_{\it C} = E_{\it HCAL} \end{cases}$$

Final calibration with pic minimize

Step 2

$$\chi^2(E_{HCAL}-E_{beam})$$

$$E_{HCAL} = \underbrace{\eta_S E_S \cdot (\eta_C - 1) + \eta_C E_C \cdot (\eta_S - 1)}_{\eta_C - \eta_S}$$

Calibration à la TWICE

- Take advantage of the fact that η_S and η_C are expected to be (almost) energy independent
- Use a sample of n pions of ANY known energy
- For the i-th pion rewrite the dual readout equation

$$\frac{\hat{S}_i}{E_i} = \alpha - \beta \frac{\hat{Q}_i}{E_i}.$$

$$\beta = \frac{\sum_{1}^{n} (\hat{Q}_{i}/E_{i})(\hat{S}_{i}/E_{i}) - 1/n \sum_{1}^{n} (\hat{Q}_{i}/E_{i}) \sum_{1}^{n} (\hat{S}_{i}/E_{i})}{\sum_{1}^{n} (\hat{Q}_{i}/E_{i})^{2} - 1/n (\sum_{1}^{n} \hat{Q}_{i}/E_{i})^{2}}$$

$$\alpha = 1/n \sum_{1}^{n} (\hat{S}_{i}/E_{i}) - \beta/n \sum_{1}^{n} (\hat{Q}_{i}/E_{i})$$

ADRIANO Applications

Dual-readout Calorimetry (compensate e/h fluactuations)

Imaging Calorimetry (spatially resolve the shower in 3D)

