

The AWAKE Project at CERN and its Connections to CTF3

Edda Gschwendtner, CERN

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- Experimental Facility at CERN
- Electron Source
- Summary

AWAKE

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Use SPS proton beam as drive beam
 - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
 - First proton driven wakefield experiment worldwide
 - First beam expected in 2016
- AWAKE Collaboration: 14 Institutes world-wide

Motivation

- Accelerating field of today's RF cavities or microwave technology is **limited to <100 MV/m**
 - Several tens of kilometers for future linear colliders
- Plasma can sustain up to three orders of magnitude much higher gradient
 - SLAC (2007): electron energy doubled from 42GeV to 85 GeV over 0.8 m \rightarrow 52GV/m gradient

Why protons?

- Energy gain is limited by energy carried by the laser or electron drive beam (<100J) and the propagation length of the driver in the plasma (<1m).
 - **Staging** of large number of acceleration sections required to reach 1 TeV region.
- **Proton beam carry much higher energy**: 19kJ for 3E11 protons at 400 GeV/c.
 - Drives wakefields over much longer plasma length, only 1 plasma stage needed.

Simulations show that it is possible to gain 600 GeV in a single passage through a 450 m long plasma using a 1 TeV p+ bunch driver of 10e11 protons and an rms bunch length of 100 μ m.

Motivation

 \rightarrow deceleration

- Plasma wave is excited by a relativistic particle bunch
- Space charge of drive beam displaces plasma electrons.
- Plasma electrons attracted by plasma ions, and rush back on-axis ightarrow acceleration
- → plasma wavelength λ_p =1mm, (for typical plasma density of $n_p = 10^{15} \text{ cm}^{-3}$)
- → To excite large amplitude wakefields, proton bunch length $\sigma_z \sim \lambda_p$ = 1mm

SPS beam: σ_z ~12cm

→ Way out: Self-Modulation Instability (SMI):

Modulate long SPS bunch to produce a series of 'micro-bunches' in a plasma with a spacing of plasma wavelength λ_p .

- ightarrow Strong self-modulation effect of proton beam due to transverse wakefield in plasma
- \rightarrow Starts from any perturbation and grows exponentially until fully modulated and saturated.

→ Immediate use of CERN SPS beam

Outline

Motivation

• AWAKE at CERN

- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Electron Source
- Summary

AWAKE at CERN

AWAKE at CERN

- Running underground facility
- Desired beam parameters
- → adequate site for AWAKE

AWAKE at CERN

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Electron Source
- Summary

- Perform **benchmark experiments using proton bunches** to drive wakefields for the first time ever.
- Understand the physics of self-modulation instability processes in plasma.

- Perform **benchmark experiments using proton bunches** to drive wakefields for the first time ever.
- Understand the physics of self-modulation instability processes in plasma.

- \rightarrow SPS proton bunch experiences **Self-Modulation Instability** (SMI) in the plasma.
- → Laser ionizes the plasma and seeds the SMI in a controlled way.
- → 10 m long plasma cell: **Rubidium vapor** source, $n_e = 7x10^{14}$ cm⁻³.

Proton Beam					
Momentum	400 GeV/c				
Protons/bunch	3 10 ¹¹				
Bunch extraction frequency	0.5 Hz (ultimate: 0.14 Hz)				
Bunch length	$\sigma_{\rm z}$ = 0.4 ns (12 cm)				
Bunch size at plasma entrance	σ [*] _{x,y} = 200 μm				
Normalized emittance (r.m.s.)	3.5 mm mrad				
Relative energy spread	∆p/p = 0.35%				
Beta function	$\beta_{x}^{*} = \beta_{y}^{*} = 4.9 m$				
Dispersion	$D_{x}^{*} = D_{y}^{*} = 0$				

Laser Beam						
Laser type	Fiber Ti:Sapphire					
Pulse wavelength	λ ₀ = 780 nm					
Pulse length	100-120 fs					
Pulse energy (after compr.)	450 mJ					
Laser power	2 TW					
Focused laser size	σ _{x,y} = 1 mm					
Energy stability	±1.5% r.m.s.					
Repetition rate	10 Hz					

- Laser and proton beam synchronized at the **100 ps level**.
 - Laser and proton beam **co-axial** over the full length of the plasma cell:
 - 100 μ m and 15 μ rad pointing accuracy
 - High resolution diagnostics to perform and monitor relative alignment
 - Plasma density uniformity better than 0.2%

Maximum amplitude of the accelerating field E_z as a function of position along the plasma. Saturation of the SMI at ~4m.

- Laser and proton beam synchronized at the **100 ps level**.
 - Laser and proton beam **co-axial** over the full length of the plasma cell:
 - 100 μ m and 15 μ rad pointing accuracy
 - High resolution diagnostics to perform and monitor relative alignment
 - Plasma density uniformity better than 0.2%

Self-modulated proton bunch

resonantly driving plasma wakefields.

Distance in beam (z)

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Electron Source
- Summary

• **Probe the accelerating wakefields with externally injected electrons**, including energy spectrum measurements for different injection and plasma parameters.

• **Probe the accelerating wakefields with externally injected electrons**, including energy spectrum measurements for different injection and plasma parameters.

Electron beam					
Momentum	16 MeV/c				
Electrons/bunch (bunch charge)	1.2 E9 (0.2 nC)				
Bunch length	σ _z =4ps (1.2mm)				
Bunch size at focus	σ [*] _{x,y} = 250 μm				
Normalized emittance (r.m.s.)	2 mm mrad				
Relative energy spread	$\Delta p/p = 0.5\%$				
Beta function	$\beta_{x}^{*} = \beta_{y}^{*} = 0.4 \text{ m}$				
Dispersion	$D_{x}^{*} = D_{y}^{*} = 0$				

Laser beam for electron source					
Laser type	Ti:Sapphire Centaurus				
Pulse wavelength	λ_0 = 260 nm				
Pulse length	10 ps				
Pulse energy (after compr.)	500 µJ				
Electron source cathode	Copper				
Quantum efficiency	3.00 E-5				
Energy stability	±2.5% r.m.s.				

- Laser and electron beam synchronized at the < 1 ps level.
- Electron bunch is externally injected into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

On-axis injection: animation of trapping and acceleration

black points – injected electrons, false colors – wakefield potential

K. Lotov, LCODE

•Electrons are trapped from the very beginning by the wakefield of seed perturbation

- •Trapped electrons make several synchrotron oscillations in their potential wells
- •After z=4 m the wakefield moves forward in the light velocity frame

- Laser and electron beam synchronized at the < 1 ps level.
- **Electron bunch is externally injected** into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

Energy of the electrons gained along the 10 m long plasma cell.

- Laser and electron beam synchronized at the < 1 ps level.
- Electron bunch is externally injected into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

- Trapping efficiency: **10 15 %**
- Average energy gain: 1.3 GeV
- Energy spread: \pm 0.4 GeV
- Angular spread up to \pm 4 mrad

Large acceptance spectrometer (aperture and magnetic field)

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Electron Source
- Summary

AWAKE Experimental Facility at CERN

Planning

	20	13	2014	2015	2016	5	2017		201	8	2019	2020
Proton beam- line			Study, Design, Procurement, C	Insta Component prep	llation aration	Commi	Data tak	ring		18	LS2 months	Data taking
Experimental area			Modification, Civil Engineering and installation Study, Design, Procurement, Component preparation		g and ation aration	ssioning	Phase 1					Duta taking
Electron source and beam-line			Studies, design	Fab	rication		Installation	ning	Ph	ase	2	

- AWAKE was approved in August 2013
- 1st Phase: First proton and laser beam in 2016
- **2nd Phase:** first electron beam in 2017
- Physics program for 3 4 years

Run-scenario	Nominal
Number of run-periods/year	4
Length of run-period	2 weeks
Total number of beam shots/year (100% efficiency)	162000
Total number of protons/year	4.86×10 ¹⁶ p
Initial experimental program	3 – 4 years

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Electron Source
- Summary

Electron Source

- Agreement between AWAKE and CLIC Collaboration in spring 2014:
 - Photo injector (PHIN) from CTF2 at CERN (5 MeV electrons) to use as electron source for AWAKE.
 - Klystron and modulator from CTF3
 - Booster from Cockcroft/Lancaster 5 MeV → 20 MeV

Electron Source

Awake Electron Beam Requirements

Parameter	Baseline Phase 2	Range to check
Beam Energy	16 MeV	10- 20 MeV
Energy spread (σ)	0.5 %	< 0.5 % ?
Bunch Length (σ)	4 ps	0.3-10 ps
Beam Focus Size (σ)	250 μm	0.25 – 1mm
Normalized Emittance (rms)	2 mm mmrad	0.5 - 5 mm mrad
Bunch Charge	0.2 nC	0.1 - 1 nC

Parmela simulation with r= 0.5mm, E=100 MV/m, Q=0.2 nC

 $\rightarrow \epsilon$ = 1.3 mm mrad

Tests in CTF3 for AWAKE

- \rightarrow use PHIN as test area in 2015 and 2016
- \rightarrow Optimization and performance tests
- Planning:

2015:

- Prototype tests in PHIN
 - Diagnostics: e.g. BPMs from TRIUMF

2016

- Booster structure tests
- High power tests
- \rightarrow integrated test of AWAKE electron source

2017:

install the electron source in the AWAKE facility

Summary

- AWAKE is proof-of-principle accelerator R&D experiment currently being built at CERN.
 - First proton-driven wakefield acceleration experiment
 - The experiment opens a pathway towards plasma-based TeV lepton collider.
 - 400 GeV SPS proton beam as drive beam
 - 10-20 MeV electrons as witness beam
 - 2 TW laser beam for plasma ionization and seeding of the SMI

AWAKE program

- Study the physics of self-modulation instability as a function of plasma and proton beam parameters (1st Phase, 2016)
- Probe the longitudinal accelerating wakefields with externally injected electrons (2nd Phase, 2017-)
- Strong interest to use PHIN in 2015 and 2016 as test area for AWAKE

• Extra slides

Laser System

Ti: Sapphire laser system:

- Laser with 2 beams (for plasma and e-gun)
- Delay line in either one of both beams
- Focusing telescope (lenses, in air) before compressor
- 35 meter focusing
- Optical compressor (in vacuum)
- Optical in-air compressor and 3rd harmonics generator for electron gun

Complete UHV vacuum system up to 10⁻⁹ mbar starting from optical compressor

New tunnel

Electron Beam Line

- Completely new beam line and tunnel:
 - Horizontal angle of 60 deg,
 - − 20% slope of the electron tunnel \rightarrow 1m level difference
 - 7.2% slope of the plasma cell
 - ~5 m common beam line between electron and proton
- **Common diagnostics** for proton (high intensity, 3E11 p) and electron beam (low intensity, 1.2E9 e)
- Flexible electron beam optics: focal point can be varied by up to 6 m inside the plasma cell

