

Search for Invisible Higgs Decays at the ILC

Akimasa Ishikawa (Tohoku University)

20141007 LCWS14@Belgrade

Invisible Higgs Decays

- In the SM, an invisible Higgs decay is H → ZZ* → 4v process and its BF is small ~0.1%
- If we found sizable invisible Higgs decays, it is clear new physics signal, especially, of Dark Sectors
 - Higgs Portal Dark Matter?
 - Cold matter in the universe
 - Dark Radiation?
 - Slight excess (less than 3σ) in effective # of v from astro physical observations
 - Relativistic matter in the universe

Invisible Higgs Decays at the LHC

- Invisible Higgs Decays were searched with $qq \rightarrow ZH$ and $qq \rightarrow qqH$ (VBF) processes using missing E_t (and M_{qq}).
 - They cannot reconstruct missing Higgs mass since they don't know momenta of initial quark pairs
- This method is model dependent since the cross sections in pp collision are assumed as those in the SM.
 - Current upper limit on BF is 58%@95%CL (expected 44%).
 - Very hard to achieve much better than 10% at the LHC

Invisible Higgs Decays at the ILC

 Invisible Higgs can be searched using a recoil mass technique with model independent way!

$$- e+e- \rightarrow ZH$$

 At the ILC, initial e+ e- momenta are known, and the four momentum of Z is measured from di-jet or di-lepton decays, we can reconstruct Higgs mass which is a powerful tool!

New!

- In this study
 - Z→qq decay is used (BF(Z \rightarrow qq) = 69.9%)
 - Ecm = 250GeV, 350GeV and 500GeV
 - 250GeV results were shown at Snowmass Seattle 2013

Cross Section of $e^+e^- \rightarrow ZH \rightarrow qqH$

- Three important energy points
 - 250GeV, 350GeV, 500GeV
- Two polarization configurations (P_{e-}, P_{e+})
 - (-80%, +30%) = "Left"
 - (+80%, -30%) = "Right"
- The cross section is maximum around 250GeV and decreasing for higher energy

σ _{zH→qqH} [fb]	"Left"	"Right"	Ratio to 250GeV
250GeV	210.2	142.0	1
350GeV	138.9	93.7	~2/3
500GeV	69.7	47.0	~1/3 LCWS14@Belgrade

Backgrounds

- Backgrounds
 - found qqll, qqlv and qqvv final states are the dominant backgrounds.
 - · other backgrounds also studied
 - Pure leptonic and hadronic final states are easily eliminated.
- We considered following main backgrounds.
 - − (1) ZZ semileptonic : one Z \rightarrow qq, the other Z \rightarrow II, $\nu_{\mu}\nu_{\mu}$, $\nu_{\tau}\nu_{\tau}$
 - (2) WW semileptonic: one W \rightarrow qq, the other W \rightarrow IV
 - − (3) Zv_ev_e , $Z \rightarrow qq$
 - (4) We v_e , W → qq
 - ννΗ, generic H decays
 - qqH, generic H decays

MC setup, Samples and Cross Sections

Generator: WHIZARD

"Right"

- Higgs mass 125GeV
- Pseudo signal: $e^+e^- \rightarrow ZH$, $Z \rightarrow qq$, $H \rightarrow ZZ^* \rightarrow 4v$
- Samples
 - Official DBD samples + Private Productions (thanks Akiya and Jan) based on DBD setting
 - Full simulation with the ILD detector

190

 Half of the samples are used for cut determination. The other used for efficiency calculation and backgrounds estimation.

E _{CM} /σ[fb]	Pol	ZZ sl	WW sl	$v_e v_e Z sI$	ev _e W sl	vv H	qqH	qqH H → 4v
250GeV	"Left"	857	10993	272	161	78	210	0.224

								H→4v
250GeV	"Left"	857	10993	272	161	78	210	0.224

								п /40
250GeV	"Left"	857	10993	272	161	78	210	0.224
	"D:=b+"	1.07	750	0.2	102	42	1.12	0 1 5 1

250GeV	"Left"	857	10993	272	161	78	210	0.224
	"Right"	467	759	93	102	43	142	0.151

	"Right"	467	759	93	102	43	142	0.151
250GaV	"Loft"	564	9156	255	/021	00	120	0 1/19

350GeV 99 139 Lett 504 **8120** ろうち 4981

0.148

"Right" 300 542 73 421 31 94 0.100

"Left" 500GeV 366 5572 559 4853 167 70 0.074 360 LCWS14@Belgrade 68 20141007

572

23

0.050

47

Overview of the Selections for 250GeV (350GeV, 500GeV)

- 0. kt jet algorithm to eliminate pile-up events only for 500GeV
- 1. Forced two-jet reconstruction with Durham jet algorithm
- 2. Isolated lepton veto
- 3. Numbers of Particle Flow Objects (PFO) and charged tracks
 - $N_{PFO} > 16 \& N_{trk} > 6$
 - Eliminate low multiplicity events like $\tau\tau$
- 4. Z mass reconstructed from di-jet : M_z
 - 80GeV < M_7 < 100GeV (80 < Mz < 104, 80 < Mz < 120)
 - Also used for Likelihood ratio cut
- 5. Polar angle of Z direction : $cos(\theta_7)$
 - Just apply < 0.99 (0.99, 0.98) to eliminate peaky eeZ background before making likelihood ratio
- 6. Loose Recoil mass selection : M_{recoil}
 - 100GeV < M_{recoil} < 160GeV (100 < M_{recoil} < 240GeV, 80 < M_{recoil} < 330GeV)
- 7. Likelihood ratio of M_z , $cos(\theta_z)$, $cos(\theta_{hel})$ to give the best upper limit : LR
 - $-\cos(\theta_{hel})$: Helicity angle of Z
 - LR > 0.3 (0.6, 0.6) for "Left" and LR > 0.4 (0.5, 0.6) for "Right"
- 8. Toy MC to set upper limit

Z mass for 250GeV

- To suppress backgrounds not having Z in final states, Z mass reconstructed from di-jet are required
 - 80 GeV < mZ < 100GeV
 - RMS for Z mass for signal is 10.6GeV and fitted sigma with Gaussian is 5.5GeV

Comparison of Z mass resolution

- As you see, only 20% difference at peak regions thanks to good jet energy resolution.
 - Please do not take the σ 's seriously since they can be changed by fitting region due to tails.
- There is a tail for higher side for 350GeV case which is due to pileup events.
 - could be improved by pile-up reduction with kt jet algorithm
 - For 500GeV, the tail was much improved by kt algorithm but still there.

Background Suppression for 250GeV

- Likelihood Ratio (LR) method is used to combine three variables
 - Z mass (see previous page)
 - Polar angle of Z direction : $\cos \theta_z < 0.99$
 - Helicity angle of Z : $cos\theta_{hel}$

Final Recoil Mass for 250GeV

Dominant backgrounds are ZZ, WW, vvZ

Comparison of signal M_{recoil} distributions

- Higher energy gives worse recoil mass resolution due to luminosity spectrum.
 - Beamstrahlung is larger for higher energy
- Recoil mass peak is also shifted to higher side.

Note. Scale and binning are different

Signal overlaid M_{recoil} distributions

- BF(H \rightarrow invisible) = 10% assumed.
- Dominant backgrounds are ZZ, WW, vvZ
- "Right" gives smaller backgrounds

Upper Limits set by Toy MC

- We performed Toy MC to set the upper limit on BF(H \rightarrow invisible).
 - This invisible does not include H→ZZ*→4v
- Integrated luminosity assumed
 - $\int Ldt = 250, 350, 500 fb⁻¹ for <math>E_{CM} = 250, 350, 500 \text{ GeV}$
 - Corresponding to running about 3 snowmass years (3x10⁷ sec) with nominal ILC
- "Left" is about 1.5 times worse than "Right".
 - 1.5²=2.3 times longer running time needed to achieve the same sensitivity
- 350GeV (500GeV) is about 1.5 (3.2) times worse than 250GeV
 - 1.5²=2.3 (3.2²=10) times longer running time needed to achieve the same sensitivity

UL on BF [%]	"Left"	"Right"
250GeV	0.95	0.69
350GeV	1.49	1.37
500GeV	3.16	2.30

Summary and Plan

- Full simulation studies of search for invisible Higgs decays at the ILD with the ILC using recoil mass technique are performed
 - e+e- →ZH, Z \rightarrow qq processes
 - E_{CM}=250, 350, 500 GeV with \int Ldt = 250, 350, 500fb⁻¹
 - Pol(e⁻,e⁺) = (-0.8, +0.3) and (+0.8, -0.3)

UL on BF [%]	"Left"	"Right"
250GeV	0.95	0.69
350GeV	1.49	1.37
500GeV	3.16	2.30

- These results should be also used as a input to running scenario
- Plan
 - Null polarization for positrons
 - LL and RR polarizations

backup

Constraint?

Asymmetric DM

Mixing angle of Dark scalar and SM Higgs, and mediator mass

$$\mathcal{L} = i\overline{\chi} (\partial - m_{\chi}) \chi + \frac{1}{2} \left[(\partial \phi')^2 - m_{\phi'}^2 \phi'^2 \right] - \kappa \overline{\chi} \chi \phi' - V(H', \phi')$$

$$h = (\cos \alpha) h' - (\sin \alpha) \phi'$$
 & $\phi = (\sin \alpha) h' + (\cos \alpha) \phi'$

Fermionic Asymmetric DM S. Matsumoto@ECFA 2013

20141007

Dark radiation

together with number of effective neutrinos, gauge structure of hidden sector and scale of dark scalar determined

$$\mathcal{L} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + |D\phi|^2 + \frac{\lambda}{4}|\phi|^2|H|^2 + \mathcal{L}_{SM}$$

Precision Cosmology meets particle physics. (Dark Radiation)
F. Takahashi@Higgs and Beyond