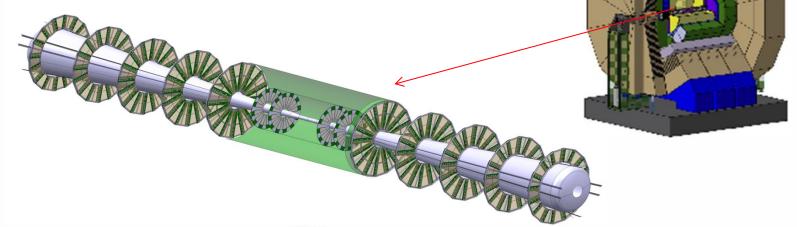
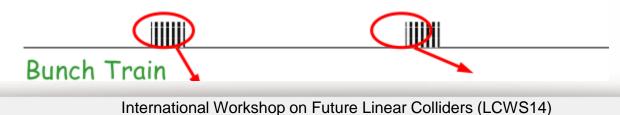


FTD-ILD sub-detector power distribution system prototype based on Supercapacitors

I.Echevarria, M. Iglesias, A. Pradas, FJ. Piedrafita,

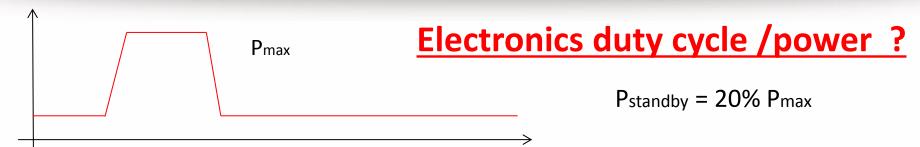
Dr. F. Arteche,


6-10 October 2014



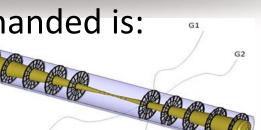
- 1. Introduction
- 2.Supercapacitors
- Supercapacitors based power distribution.
- 4. FTD-ILD power group prototype —Power dissipation test results
- 5.Conclusions

- The mstrip-FTD-ILD system is a silicon strip tracker located in the innermost part of the tracker region of the ILD.
 - It consists of 10 disks.
 - Each disk has 16 petals



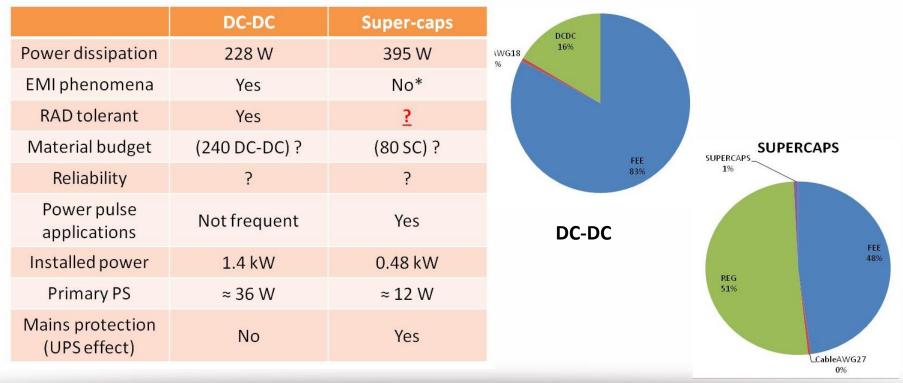
- The FTD electronics will operate synchronously (or coordinated) with ILC accelerator....
 - 1 ms bunch train every 200ms (Duty cycle of 0.5%)

Belgrade, Serbia, October 2014

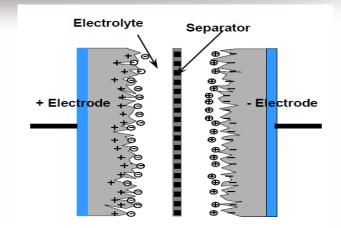


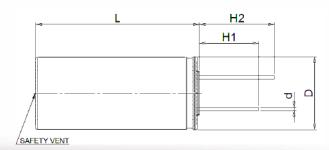
- Several conservative considerations have been assumed in the electronics operation:
 - Electronics duty cycle operation (2.5% 5ms / 200ms).
 - 1 ms power up / down
 - 3 ms operation state to stabilize power and operate.
 - It minimizes transients
 - Power consumption during the standby (20% Pmax). !!!
 - It is a critical parameter (100W / 20W): 22 W/cycle
 - 2.5W/cycle FEE ON (11%)
 - 19.5W/cycle STAND BY (89 %)
 - If standby power 10W : Ptotal = 12.25 W/cycle
 - If FEE operation time 2.5ms: : Ptotal=21W/cycle

- The total Strip-FTD current / power demanded is:
 - Bunch crossing state 458 A (≈ 860 W)
 - Stand-by state 91.6A (≈ 171W)
- System Granularity: 1/4 Petal
 - Based on reliability and system design issues


	MIDDLE PITCH										
FTD	FTD3		FTD4		FTD5		FTD6		FTD7		
	INN	OUT	INN	OUT	INN	OUT	INN	OUT	INN	OUT	
Nº Readout	33920	61504	41600	64224	45472	65504	51232	67424	63	424	
Chips per petal (256 ch)	24		26		28		29		16		
Optical links per petal	1/2		1/2		1/2		1/2		1/2		
I1.5 (A) per Petal	1.75/0.35		1.9/0.38		2.05/0.41		2.12/ 0.42		1.16/0.23		
12.5 (A) per Petal	1.05/0.21		1.13/0.23		1.22/0.24		1.27/0.25		0.7/0.14		
l per petal	2.79	2.79/0.56		3.03/0.61		3.26/0.65		3.39/0.68		1.86/0.37	
I per disk	44.6	44.6/8.9		48.5/9.71		52.08/10.42		54.19/10.84		29.76/5.95	
TOTAL Mstrip- FTD Current (both sides)			458 A /	91.6 A	(CMS upgrade TK elec.)						

G3

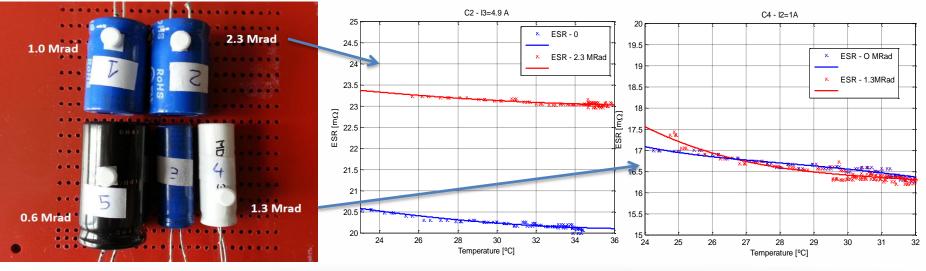

- There are several topologies that may be used for FTD.
 - DC-DC-based power distribution
 - Super-capacitor based power distribution
- Each of them has advantages and disadvantages.
 - A detailed study was presented in LCWS 2012 Arlington (Texas)


2. Supercapacitors

- The most important element in SC-LV regulation option is the super-capacitor.
 - It is new for HEP but not for industrial applications
- Super-capacitors are electrochemical capacitors with very high capacitance
- The most common super-capacitor is the double layer capacitor.
- Double layer capacitor structure
 - Electrodes: Activated Carbon
 - Separator: Cellulose
 - Electrolyte: Quaternary salt & acetonitrile.
 - Other: Aluminum
- Very light few g / size 1-3 cm

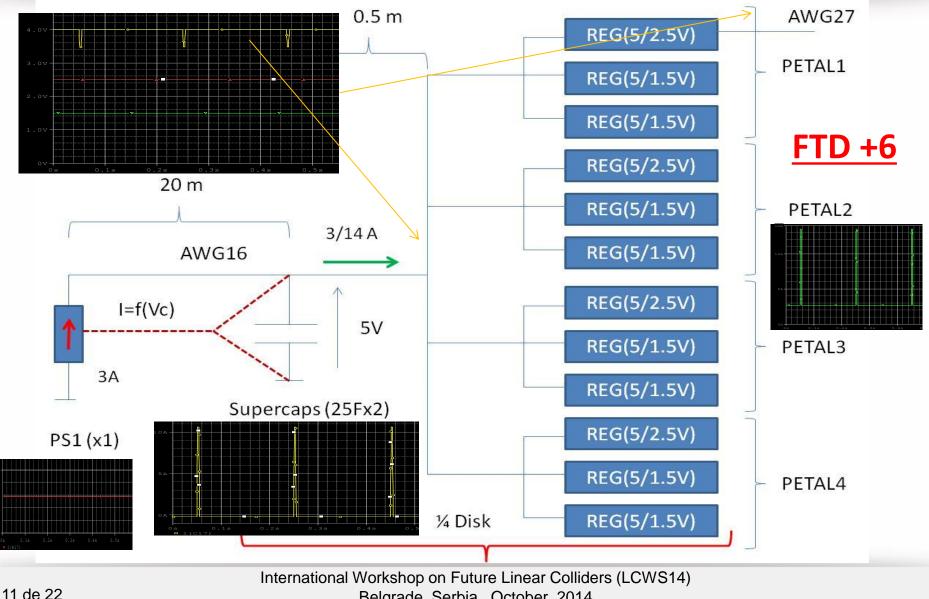
Size	Rated Voltage	Rated Capacitance	MAX ESR(mΩ)	Dimension(mm)				Volume (ml)	Weight (g)
	(V,DC)	(F)	DC	D	L	w	т	(111)	(9)
Small	2.7	3	55	8	20			1.0	1.5
	2.7	5	35	10	20			1.6	2.3
	2.7	6	33	8	30			1.5	2.3
	2.7	10	30	10	30			2.4	3.2
	2.7	25	25	16	25			5.0	6.5
	2.7	50	16	18	42			10.2	11.3

2. Supercapacitors


- There are four elements that have to be analyzed in detail for HEP applications
 - Material Budget.

- It seems OK but a detailed evaluation is required
- Magnetic field issues
- Cycling issues
- Radiation issues
- Cycling issues (Reliability).
 - Super-capacitor should be able to operate more that 10 million of cycles per year (DC-DC too)
 - After 1e6 of full duty cycles a SC may decrease the 20% of capacitance
- <u>Radiation issues</u>
 - Type of radiation: gammas & electrons
 - Total dose: 1 or 2 Mrad

2. Supercapacitors


- A radiation test has been carried out in order to start the super-capacitor validation for FTD-ILD (<u>ECFA 2013</u>)
 - Electrons at 20 MEV (ELBA facility University of Bonn)
- 5 super-capacitors have been tested ESR(T) & C(T)
 - Different rates 3 x 10 F & 2 x 25 F
 - Different companies (Maxwell, Nesscap & Panassonic)
- First results are very promising but it is still necessary a long validation process

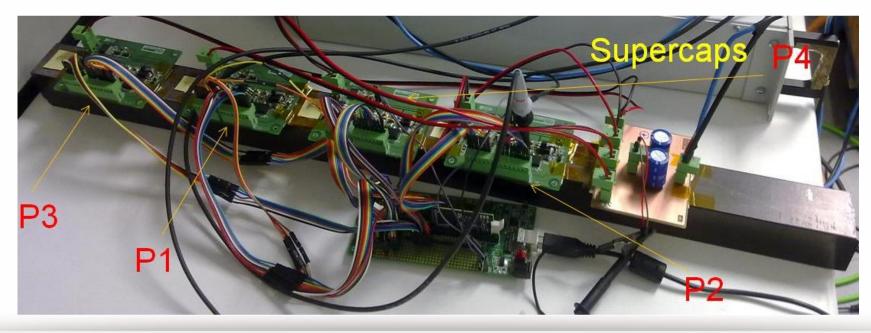
3. Supercapacitor based PS ITAINNOVA

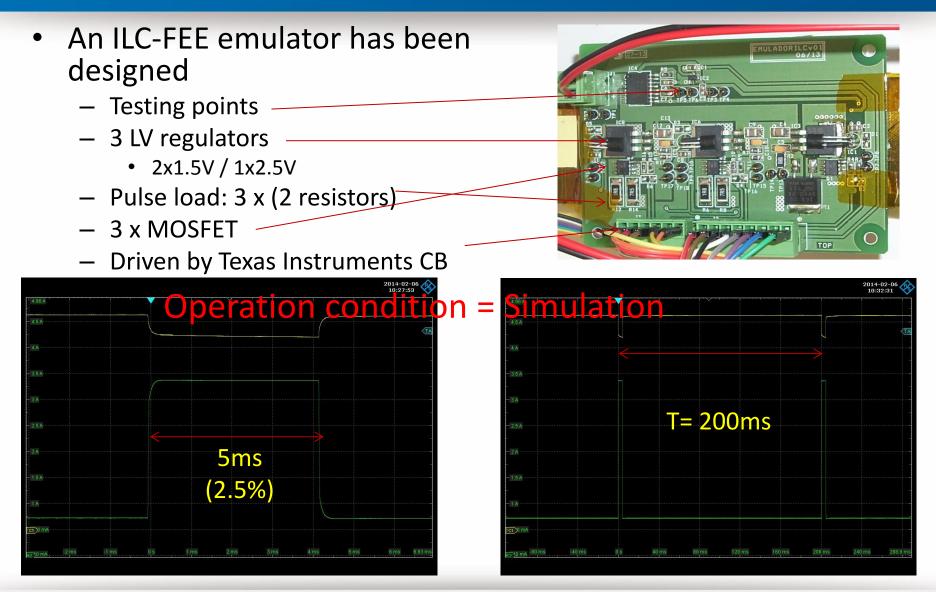
- The main elements of this <u>topology</u> are:
 - -Supercapacitors:
 - Pulse power Transients locally
 - -LV regulators:
 - Stabilize FEE voltage
 - -Current source :
 - Controls super-capacitor voltage

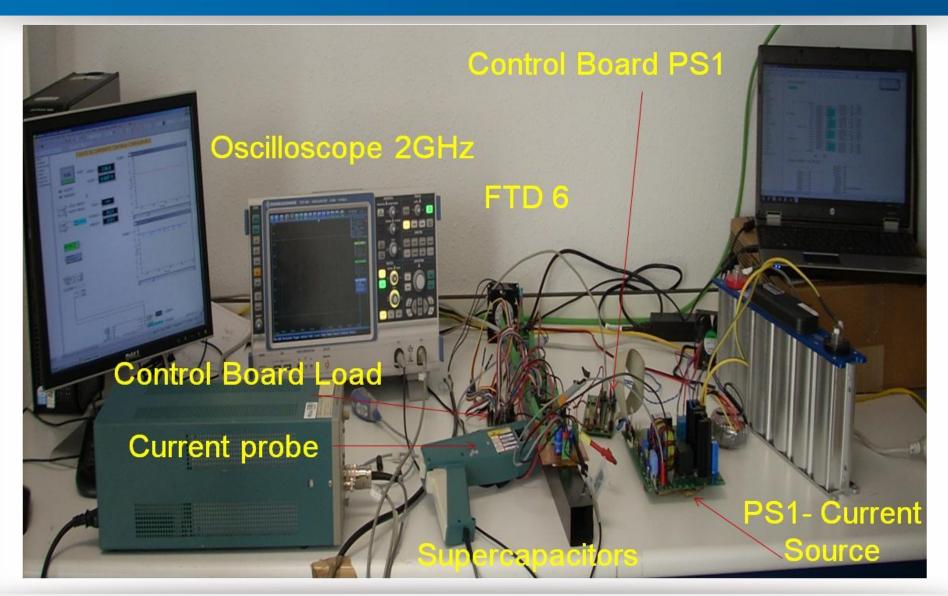
3. Supercapacitor based PS ITAINNOVA

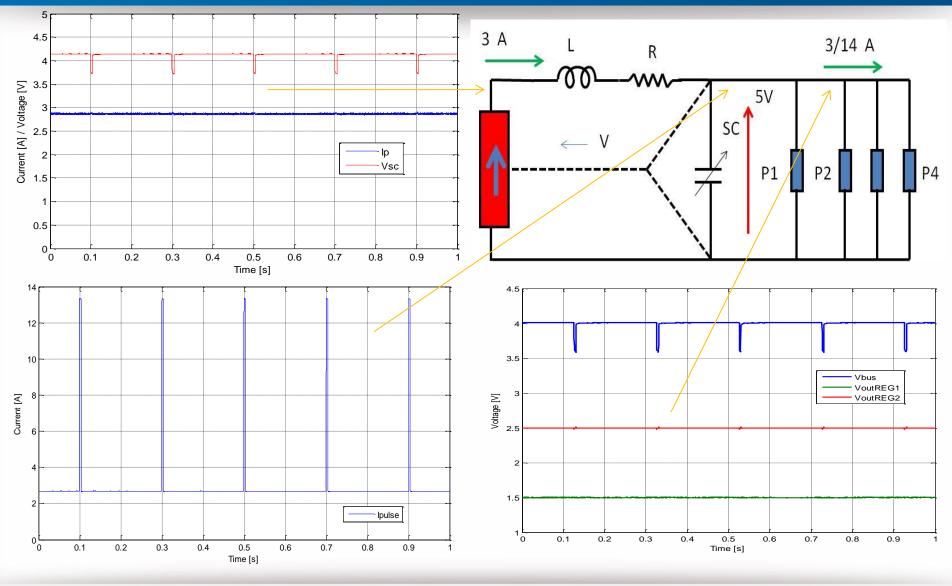
Belgrade, Serbia, October 2014

3. Supercapacitor based PS ITAINNOVA

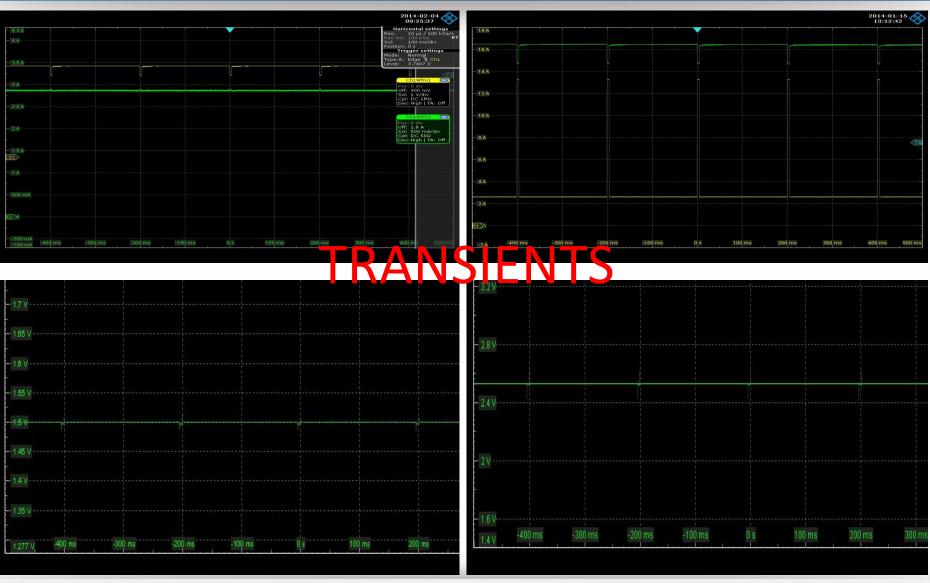

- The high capacitance has two advantages:
 - It will protects the system in case mains failure Similar to UPS
 - It helps shutdown the system in a controlled way.
 - The dynamic response of primary power unit may be very slow
 - Remote regulation of the supercap voltage will be easy

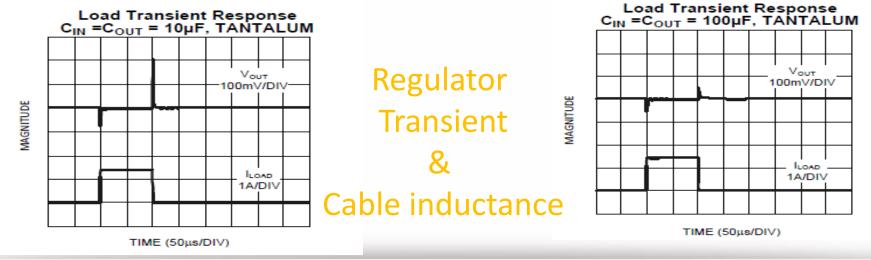



- The duration of the shut-down capability will depends on :
 - Capacitance
 - Voltage


4. FTD-ILD power group prototype ITAINNOVA **□**[□]

- A real prototype of 1 Group of FTD sub-detector (FTD +6) has been developed
 - 4 load boards It simulates the FEE (hybrid) per petal
 - 2 Super-capacitors (several distance to Dummy loads 50cm /10cm)
 - 1CF structure It has been developed by FERMILAB-CMS Tracker II
 - Ip=13.5A Isb =2.7A (Per petal Ip=3.4A / Isb=0.7A)
 - Vsc = 4.2 V / Vinp=4V

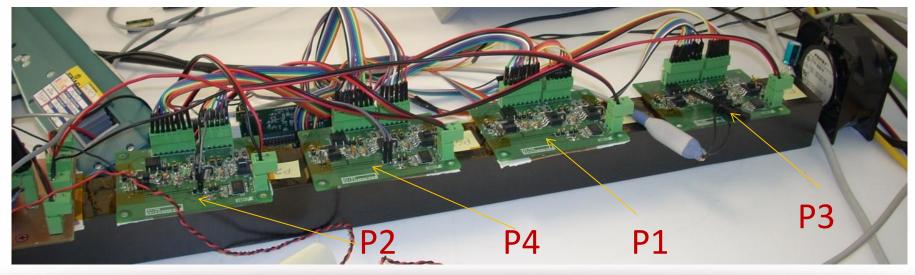




International Workshop on Future Linear Colliders (LCWS14) Belgrade, Serbia, October 2014

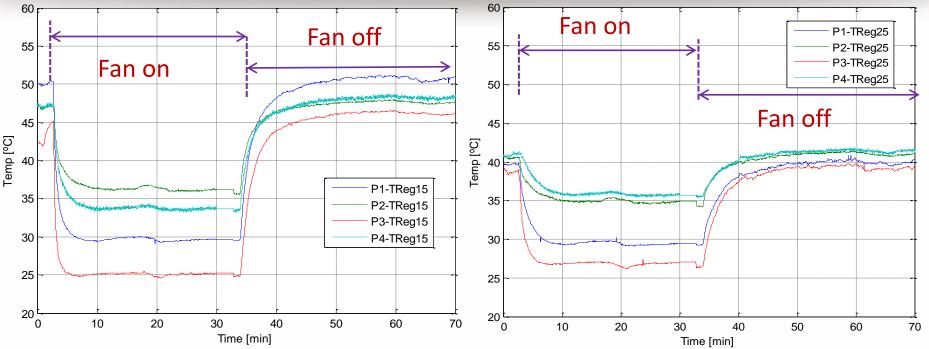
16 de 22

4. FTD-ILD power group prototype ITAINNOVA □[□]


<u>Major Fault – UPS capability</u>

4.1 FTD-ILD power group prototype:

Power dissipation test



- A very simple temperature test has been performed
- Temperature sensors were installed on each board:
 - One Termistor (PTC) per LV regulator
 - Temperature is processed by the control board
- A fan has been installed on one side of the CF structure
 - It has been switched on /off
- Systems were running more than 3 hours
- Baseline Temperature : 21ºC

4.1 FTD-ILD power group prototype:

Power dissipation test

- LVReg (1.5V) dissipates more power than LV (2.5V)
- From the point of view of electronics, "this prototype" does not need to be cooled (resistances dissipate power too)
- Not Cooled: Tmax(P1)≈51°C (ΔT ≈ 30°C) / Tmin(P3)≈ 46°C (ΔT ≈ 25°C)
- Cooled: Tmax(P2)≈34^oC (ΔT ≈ 13^oC) / Tmin(P3)≈ 25^oC (ΔT ≈ 4^oC)
- Pulsing effect is very small from the point of view temperature

5. Conclusions

- A general overview of the supercapacitor based power supply distribution system for FTD-ILD has been presented
- Main characteristics and key elements have been shown
 - Operation condition (regulation, pulsing, supercapacitors..)
- Supercapacitors fit quite well power pulsing requirements
 - Radiation hardness shows no stoppers
 - It still requires a detail analysis
- A real prototype of 1 group has been developed and tested
 - Very good agreement with simulations
- Power dissipation aspects :
 - From electronics point of view, this system does not need to be cooled
 - The pulsing effect seems not to have a big impact
- The results are very promising but a long study of the system is required in order to define final specification