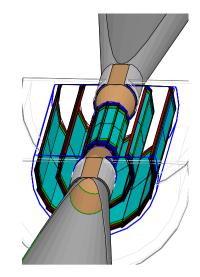
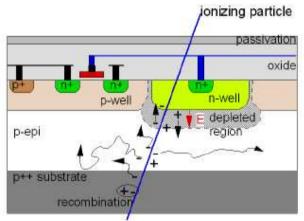
CPS Performances Expected from a 180 nm CIS Process for the ILD Vertex Detector

M. Winter (on behalf of the PICSEL group of IPHC-Strasbourg) - ALPIDE chip : ALICE/CERN coll.


LCWS14, Beograd, 7 Octobre 2014

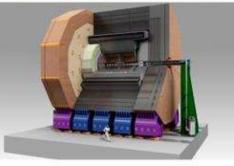

Outline

- VXD concept addressed : 2-sided ladders with different CPS on L1, L2, L3-6
- Starting points : STAR-PXL & ALICE-ITS
- Extrapolated performances for VXD-L1 & -L2 (mainly)
- Summary & Conclusion

Topics Addressed by the R&D

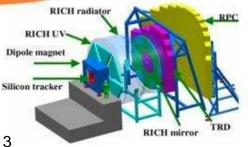
- VERTEX DETECTOR CONCEPT :
 - * Cylindrical geometry based on 3 concentric 2-sided layers
 - * Layers equipped with 3 different CMOS Pixel Sensors (CPS)
- PIXEL SENSOR DEVELOPMENT:
 - * Exploit CPS potential & CMOS technology evolution
 - * R&D performed in synergy with other applications
 - \hookrightarrow EUDET-BT, STAR, ALICE, CBM, ...
 - * CPS \equiv unique technology being simultaneously granular, thin, integrating full FEE, industrial & cheap
 - * Address trade-off between spatial resolution & read-out speed
- DOUBLE-SIDED LADDER DEVELOPMENT:
 - $\ast\,$ Develop concept of 2-sided ladder using 50 μm thin CPS
 - Develop concept of mini-vectors providing high spatial resolution & time stamping
 - * Address the issue of high precision alignment
 & power cycling in high magnetic field

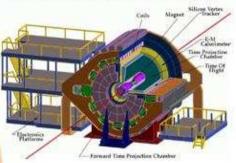
CMOS Pixel Sensors (CPS): A Long Term R&D


Initial objective: ILC, with staged performances

& CPS applied to other experiments with intermediate requirements

EUDET 2006/2010


ILC >2020 International Linear Collider


EUDET (R&D for ILC, EU project) STAR (Heavy Ion physics) CBM (Heavy Ion physics) ILC (Particle physics) HadronPhysics2 (generic R&D, EU project) AIDA (generic R&D, EU project) FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) EIC (Hadron physics) CLIC (Particle physics) BESIII (Particle physics)

.....

CBM >2018 Compressed Baryonic Matter

STAR 2013 Solenoidal Tracker at RHIC

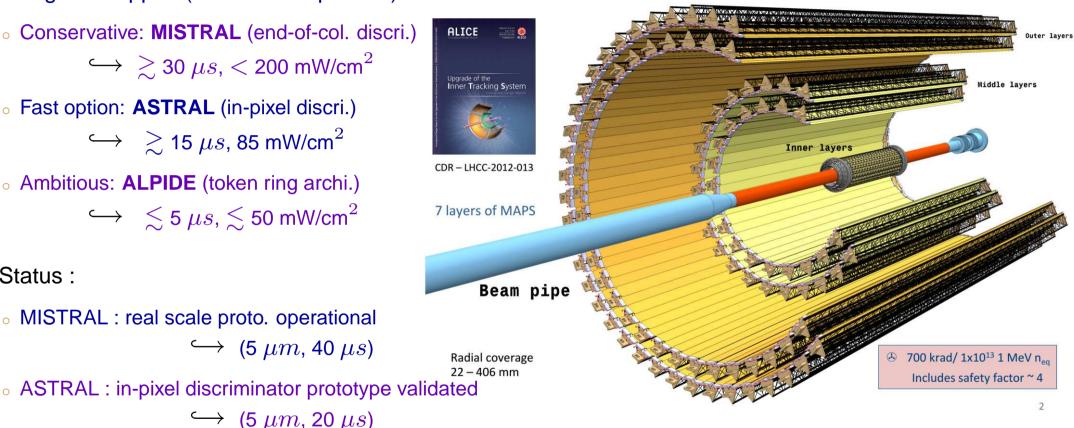
ALICE 2018 A Large Ion Collider Experiment

State-of-the-Art : STAR-PXL

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

Next Progress Driver : ALICE-ITS Upgrade

- Vx Det. (3 layers) + Tracker (4 layers, 10 m²) : 5 μm , 20-30 μs , 700 kRad & 10¹³ n_{ea}/cm² at 30°C
- 3 alternative & complementary sensors being developped (CERN main partner):
 - Conservative: MISTRAL (end-of-col. discri.) $\hookrightarrow \gtrsim$ 30 μs , < 200 mW/cm²
 - Fast option: ASTRAL (in-pixel discri.) $\hookrightarrow \gtrsim$ 15 μs , 85 mW/cm 2
 - Ambitious: **ALPIDE** (token ring archi.) $\hookrightarrow \lesssim 5 \ \mu s, \lesssim 50 \ \mathrm{mW/cm}^2$


MISTRAL : real scale proto. operational

 \hookrightarrow (5 μm , 40 μs)

 \hookrightarrow (5 μm , 20 μs)

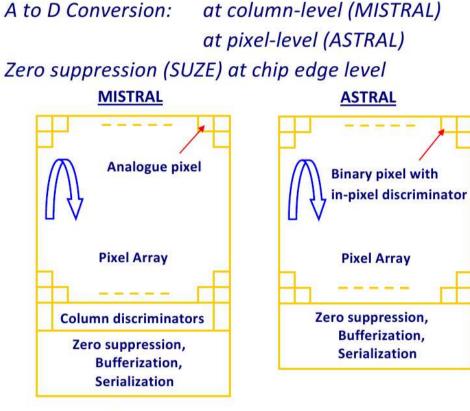
Status :

25 G-pixel camera (10.3 m²)

• ALPIDE (CERN based development) : full scale prototype functional \mapsto (5-6 μm , 4-5 μs)

(* read-out time is for 1.3/1.4 cm long columns \simeq 2-2.5 \times VXD-L1 column length (for same pixels)

Synchronous Read-Out Architecture : Rolling Shutter Mode


Design addresses 3 issues:

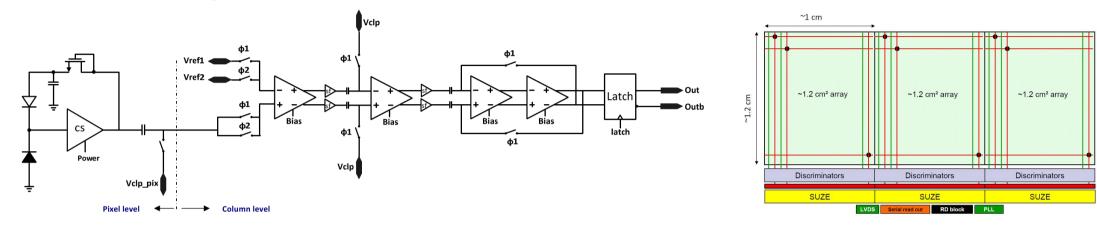
E.

Y.

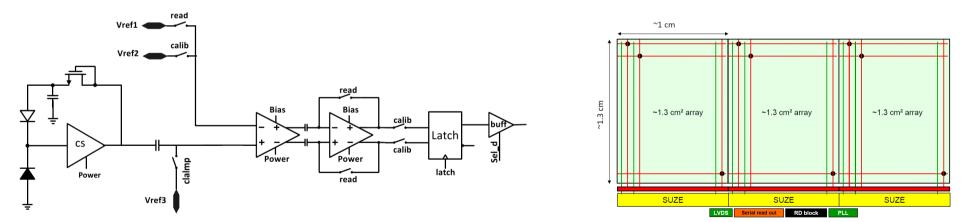
Y.

Increasing S/N at pixel-level

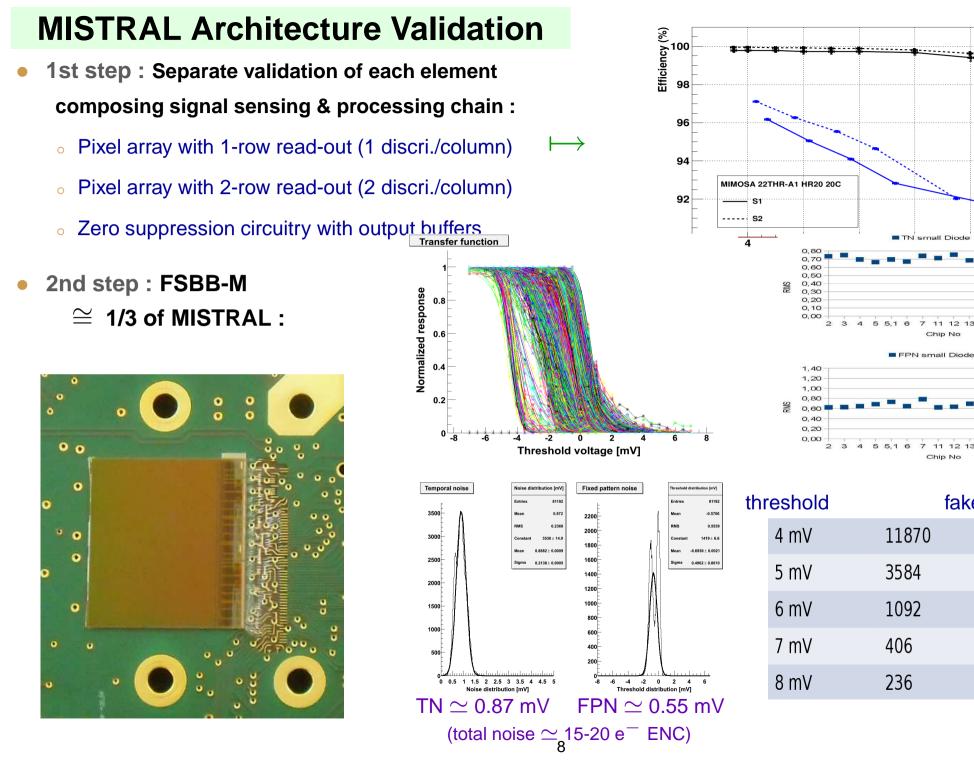
Window of 4x5 pixels


- Power vs speed:
 - Power: only the selected rows (N=1, 2, ...) to be read out
 - Speed: N rows of pixels are read out in //
 - Integration time = frame readout time

$$t_{\text{int}} = \frac{(Row \ readout \ time) \times (No. \ of \ Rows)}{N}$$



MISTRAL & ASTRAL : Schematics & Layouts


• MISTRAL : rolling shutter with 2-row read-out & end-of column discriminators

• **ASTRAL** : rolling shutter with 2-row read-out (\equiv MISTRAL) & in-pixel discriminators

• 1st Full Scale Building Blocks (FSBB) fab. in Spring '14 \mapsto FSBB-M0 lab tests \pm completed

10⁻¹

10⁻²

10⁻³

10-4 ÷

10-5

10-6

10-7 10⁻⁸

10⁻⁹

10⁻¹⁰

11 12 13 14 15 16 17 18 19 20

12 13 14 15 16 17 18 19 20

1.4 10e-5

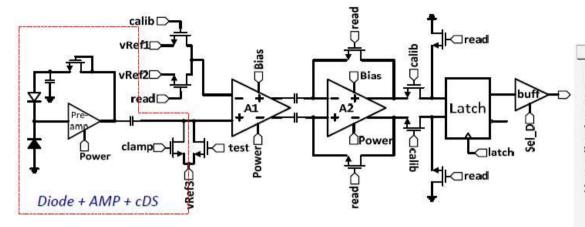
4.35 10e-6

1.32 10e-6

4.96 10e-7

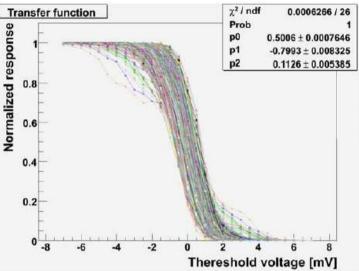
2.86 10e-7

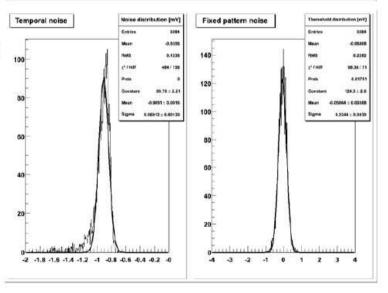
fake rate


6

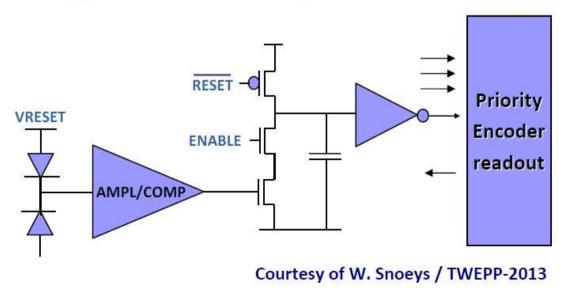
Chip No

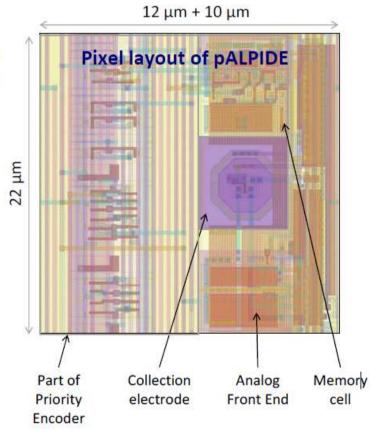
11


Chip No

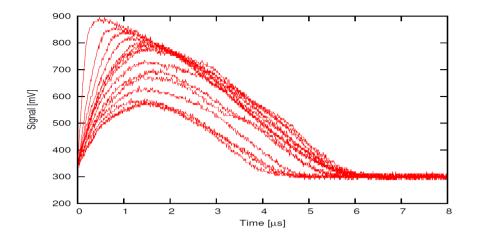

Synchronous Read-Out Architecture : In-Pixel Discrimination

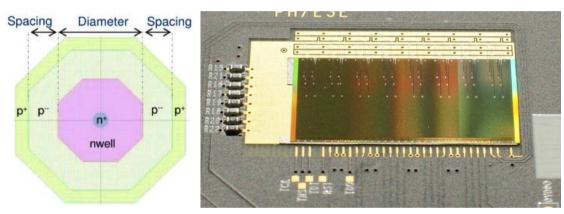
To provide adequate performance within small pixel

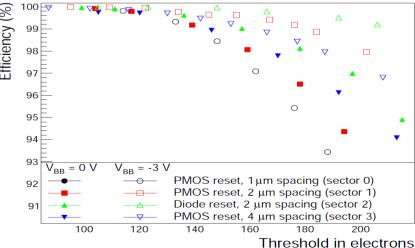

- ✤ Structure selection: speed & power & offset mitigation vs area
 - Differential structure: preferable in mixed signal design
 - Two auto-zero amplifying stages + dynamic latch
 - OOS (Out Offset Storage) for the first stage and IOS (Input Offset Storage) for the second
 - Gain and power optimized amplifier
- ✤ Very careful layout design to mitigate cross coupling effects
- 🤟 Conversion time: 100 ns; current: ~14 μA/discriminator
- Test results of in-pixel discriminator:
 - Discriminators alone: TN ~ 0.29 mV, FPN ~ 0.19 mV
 - Discriminators + FEE: TN ~ 0.94 mV, FPN ~ 0.23 mV



Asynchronous Read-Out Architecture : ALPIDE (Alice Plxel DEtector)


- Design concept similar to hybrid pixel readout architecture thanks to availability of Tower CIS quadruple well process: both N & P MOS can be used in a pixel
- Each pixel features a continuously power active:
 - Low power consumption analogue front end (Power < 50 nW/pixel) based on a single stage amplifier with shaping / current comparator
 - High gain ~100
 - Shaping time few μs
 - Dynamic Memory Cell, ~80 fF storage capacitor which is discharged by an NMOS controlled by the Front-End
- Data driven readout of the pixel matrix, only zerosuppressed data are transferred to the periphery




ALPIDE Architecture Validation

- Ist step : pALPIDE to validate fast pixel read-out
 - $_\circ\,$ pALPIDE : 64 columns of 512 pixels (22 $\mu m imes$ 22 μm)
 - $_{\circ}\,$ Analog output of one pixel tested with $^{55}{\rm Fe}$ source
 - \hookrightarrow expected time resolution confirmed
- 2nd step : Full scale ALPIDE
 - $_{\circ}~$ Final sensor dimensions : 15 mm \times 30 mm
 - $_\circ~$ About 0.5 M pixels of 28 $\mu m imes$ 28 μm
 - 4 different sensing node geometries
 - Possibility of reverse biasing the substrate

Comments on ILD Vertex Detector Requirements

• Expected N(hits)/cm²/BX at 500 GeV & 1 TeV with anti-DID, for each ILD-VXD layer (DBD) :


Layer	1	2	3	4	5	6
0.5 TeV	6.3±1.8	4.0±1.2	0.25±0.11	0.21±0.09	0.05±0.03	0.04±0.03
1 TeV	11.8±1.0	7.5±0.7	0.43±0.13	0.36±0.11	0.09±0.04	0.08±0.04

- Occupancy in L1 and L2 :
 - * L1 : 17 $\mu m \times 17 \mu m$ pixels (cluster mult. \simeq 5) Pixel occ. at 500 GeV $\simeq 10^{-4}$ /BX $\Rightarrow 10^{-2}$ /50 μs
 - * L2 : 17 $\mu m \times 102 \ \mu m$ pixels (cluster mult. \simeq 3) Pixel occ. at 500 GeV $\simeq 2 \times 10^{-4}$ /BX $\Rightarrow 10^{-3}$ /2.5 μs
 - * 1 TeV : twice higher occupancy
 - * Luminosity upgrade : 4 times higher occupancy
- * Large uncertainties (MC stat., anti-DID uncertainty, etc.)
- \Rightarrow Safety margins required on param. governing occupancy

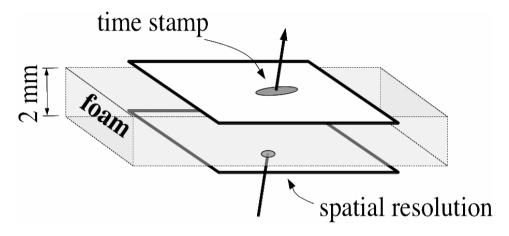
Upcoming Sensors (Partly) Based on the ALICE Development

- Spin-off of MISTRAL :
 - $_\circ~$ best suited to reach \lesssim 2.8 μm resolution in L1 **BUT** pixels of 17 $\mu m imes$ 17 $\mu m \Rightarrow~$ \lesssim 60 μs r.o. time
 - $_\circ\,$ alternative with 2-row read-out : pixels of 20 $\mu m imes$ 14 $\mu m \Rrightarrow\,$ \lesssim 40 μs r.o. time
- Spin-offs of ASTRAL :
 - $_\circ~$ L2 : pixels of 17 $\mu m imes$ 102 $\mu m \Rrightarrow~$ \sim 7 $\mu m \oplus$ 2.5 μs
 - L1 & L2 : pixels of 22 $\mu m \times$ 33 $\mu m \Rightarrow$ 5 $\mu m \oplus$ 8 μs → mini-vectors \cong 3.5 $\mu m \oplus$ 4-8 μs
 - $_\circ~$ L3-L6 : pixels of \lesssim 22 $\mu m imes$ 33 $\mu m \Rightarrow~$ 4-5 $\mu m \oplus$ 30 $\mu s~$
- Spin-offs of ALPIDE :
 - $_\circ~$ L2 : pixels of 25 $\mu m imes$ 25 $\mu m \Rrightarrow~$ 5 $\mu m \oplus <$ 5 μs
 - $_\circ~$ L2 : pixels of 15 $\mu m imes$ 125 $\mu m \Rrightarrow~$ 8 $\mu m \oplus <$ 1 μs reachable ?
- Spin-offs of MIMOSA-31, MISTRAL & MIMADC :
 - $_\circ~$ L3-L6 : pixels of 35 $\mu m imes$ 35 μm $\Rightarrow~$ 4 μm \oplus 60 μs
 - $_\circ$ L1-L2 : pixels of 25 $\mu m imes$ 25 $\mu m \Rightarrow$ 3 $\mu m \oplus$ 20 μs or 25 $\mu m imes$ 35 $\mu m \Rightarrow$ 3.5 $\mu m \oplus$ 15 μs ???
- **MIMOSA-33 :** Fine Pixels of 4 $\mu m \times$ 4 μm with delayed (analogue) read-out

SUMMARY

- **CPS are validated for vertex detectors :** STAR-PXL physics run of Spring '14
 - \hookrightarrow architectures developed in 0.35 μm CMOS process comply with ILD-DBD requirements BUT are far from the real potential of CPS
- Faster read-out would alleviate vulnerability to unknowns
 associated to beam related background and track reconstruction performance
 → main motivation for further R&D, with single bunch tagging as ultimate (realistic ?) goal
- ALICE-ITS \equiv new driving application of CPS, based on a better suited (180 nm) process
 - MISTRAL \cong MIMOSA-28 with twice faster read-out : validated at real scale
 - ASTRAL \equiv MISTRAL with in-pixel discri. \Rightarrow twice faster : validated at small proto. scale
 - ALPIDE (CERN) : asynchronous read-out (few μs r.o. time) : 1st full scale proto. test results satisfactory
 - \Rightarrow 2-4 times faster read-out w.r.t. 0.35 μm techno., with up to 60 % power reduction
- Next steps :
 - finalise ALICE-ITS sensor prototyping in 2015
 - start deriving CPS for VXD in 2016/17 \mapsto baseline \triangleright

Layer	σ_{sp}	t_{int}	
ILD-VXD/In	$<$ 3/5 μm	30-40/8 µs	
ILD-VXD/Out	\sim 3.5/4 μm	80/120 μs	


Topics not addressed here: alternative CPS designs, CPS for trackers, PLUME devts, etc.

ILD - VXD Concept Addressed

- Two types of CMOS Pixel Sensors :
 - Inner layers : Priority to read-out speed & spatial resolution
 - Outer layers : Priority to power consumption and good resolution
- Inner layers : \sim 300 cm 2
 - L1 : small pixels with end-of-column
 - binary charge encoding $\mapsto ~\lesssim$ 3 μm
 - \Rightarrow 20×14 μm^2 with 2-row read-out : \lesssim 40 μs
 - ⇒ 17×17 μm^2 with 1-row read-out : 60 μs
 - \hookrightarrow 2-row read-out : 30 μs (tbc)

- $_{pprox}$ 22imes33 μm^2 with 2-row read-out : \sim 8 μs
- $_{pprox}$ 22imes33 μm^2 with 4-row (tbc) read-out : \sim 4 μs
- Outer layers : \sim 3000 cm 2
 - L3-6 : large pixels with end-of-col 3-4 bit ADCs
 - $_{\circ}~$ 35imes35 μm^2 pixels : \lesssim 4 μm & 120 μs
 - $_{\circ}~$ 25imes50 μm^{2} pixels : \lesssim 4 μm & 80 μs

