Stress issues at the ILC target (status report Hamburg+DESY)

Gudi Moortgat-Pick for Olufemi Adeyemi, Andriy Ushakov, Sabine Riemann

- Short intro
- Current status
- Future plans of DESY and Hamburg

ILC Positron Target

• `Positron Source is the only area of ILC where real R&D is still remaining' (K. Yokoya)

- 0.4 X₀ thickness, Ti6Al4V rotating rim,100 m/s tangential speed
- e+ yield: 1.5 e+/e- (50% safety margin)

Technical facts

P(e+) (always yield ≥1.5 imposed)

P(e-) ~ 80-90%

 \sqrt{s} =240 GeV: 120 GeV e- drive beam

Undulator with 231 m (K=0.92, λ=11.5 mm), collimator r=3.5 mm

[e⁺/e]

− P(e+)~ 40%

Eb=175 GeV

√s=350GeV: 175 GeV e- drive beam

Collimator with r=1.2 mm,P(e+)~ 56%

√s=500GeV: 250 GeV e- drive beam

- Undulator with 144 m, coll. r=0.7mm
- − P(e+)~59%

 \sqrt{s} =1 TeV: 500 GeV e- drive beam

 $-\lambda_{u} = 4:3$ cm, 176 m length, coll r=0.9mm, K=2.5

A. Ushakov, LC note

R_{col} [mm]

− P(e+)~54%

Sabine

Energy deposition at the ILC e+ source

Energy deposition in targets

- photon target, Ti wheel, Ø = 1m, 2000rpm
 - PEDD per bunch train: 67.5 J/g (101.3 J/g h.lumi) $\Leftrightarrow \Delta T_{max} = 130K$ (195K)
 - Energy deposition per bunch: 0.31 ... 0.72J ⇔ ΔT ≈ O(1K)
 - Polarization upgrade to 50% or 60% increases E_{dep} and PEDD
 - Fatigue limit in Ti : ΔT ~ 600K (340MPa)
- 300Hz target; tungsten
 - Peak energy deposited density (PEDD) per triplet below 30J/g (35J/g)

Energy deposition in collimator

- Collimator is partial γ beam dump, absorbs up to 50% of γ beam power
- Design strongly coupled to drive e- beam energy

Dynamic response to energy deposition

- energy deposition, instantaneous temperature rise ⇔ stress waves
- After few (tens) microseconds stress becomes quasistatic

Material response depends on

- beam energy, bunch/pulse length,
- deposited energy, material parameters

Energy deposition at target at 120 GeV drive beam

Source Parameters:

- 120 GeV e- beam
- Undulator K = 0.92
- Optimal phase of capture RF
- 8.5 mm aperture radius of FC
- 192.5 m undulator active length
- 266.5 m undulator lattice length
- 412 m between undulator and target

Photons on Target:

 E_1 ph = 6.4 MeV (Eph)= 6.8 MeV (Pph) = 54.1 kW

Energy Deposited in Target:

 $(E_{dep}) = 9.2\% (5 \text{ kW})$

- Target rotated with 100 m/s tangential speed
- 554 ns bunch spacing

Peak Energy Deposition
Density
PEDD ~44 J/g

Temperature Rise ΔT ~84 K per pulse

Thermal Target Stress at 120 GeV drive beam (ANSYS)

Time Evolution of Equivalent von-Mises Stress (on back side of target and beam axis)

- ➤ Max. Equivalent Stress: 140 MPa (27.5% of Fatigue Strength)
- ➤ Ti6Al4, Fatigue Strength (Unnotched 10M Cycles): 510 MPa

Stress at E_b =250~GeV

250 GeV e⁻, K = 0.92, $R_c = 0.7$ mm, 554 ns bunch spacing, 100 m/s rot. speed

Energy Deposition after Bunch

 $E_{max} = 1.6 \text{ J/(g bunch)}$

Energy Deposition after Bunch Train

 $E_{max} = 52 \text{ J/(g train)}$

Bunch Overlapping Factor $\equiv E_{max Train}/E_{max Bunch} = 32.5$

Andriy

Temperatur distribution and maximal stress

250 GeV e⁻, K = 0.92, $L_u = 143.5$ m (active), $R_c = 0.7$ mm

Temperature Map after Bunch Train

Max. Dynamic Stress in Target

C: Explicit Dynamics Equivalent Stress Type: Equivalent écon-Unit Pa Time: 7,6808e-008 18.10.2012 16:39 1,5761e8 Max 1,4874e8 1,3549#8 1,2423e8 1,1297e8 1,0171e8 9,0457e7 7,92e7 6,7943e7 5,6686e7 4,542987 3,4171 e7 2,2914e7 1,1657e7 4,2285e5 Min

 $\Delta T_{max} \simeq 100 \text{ K}$

 $\sigma_{max} \simeq 160 \text{ MPa}$

www.matweb.com – Ti6Al4V (Grade 5), Annealed: Tensile Yield Strength = **880 MPa**, Fatigue Strength = **510 MPa** at 10⁷ Cycles

Base-Line Undulator at High Energies

Increase of e- beam energy results in

- Higher energy of photons (~E²)
- Bigger e+ yield
- Bigger energy spread
- More difficult to capture
- ➤ Smaller angle of photons (~E⁻¹)
- Higher photon density
- Higher PEDD per bunch
- Smaller e+ polarization

Yield and Polarization vs e⁻ Energy K = 0.92, $\lambda_u = 11.5$ mm

Suggestion for ILC 1 TeV upgrade:

Use another SC helical undulator with bigger period (λu = 4.3 cm, same NbTi technology), that will keep energy of photons "small" (Eph ~λ₁₁-2)

Maximal Thermal Stress (at 100 ns after pulse end)

500 GeV e⁻,
$$K = 2.0$$
, $\lambda = 4.3$ cm, $R_{col} = 0.8$ mm

$$\sigma_{max} = 145 \text{ MPa}$$

$$\sigma_{max} = 164 \text{ MPa}$$

Dynamical stress in target should be at acceptable level

Deposited Energy in Target

Deposited Energy by **Bunch Train**

 $\sigma_{\rm X} \simeq$ 2.5 mm; Bunch Shift = 55.4 μ m

Bunch Overlapping Factor = **114**

Used: simplified ANSYS Model

- "Instantaneous" spacial distribution of $E_{MeV/ph}(x,y,z)$ max $E_{MeV/ph} = 1.2 \text{ MeV/(phcm}^3)$
- Bunch Overlaping Factor (BOF): 114 bunches/train
- $N_{ph/"train"} = N_{e-/bunch} Y_{ph/(e-m)} L_u BOF = 8.5 x 10^{14}$
- PEDD = max $E_{MeV/ph}$ $N_{ph/"train"} \approx 44 \text{ J/g}$ $\Delta T_{max} \approx 84 \text{ K}$
- $\Delta t_{"train"} = 554 \text{ ns * BOF} = 63.2 \text{ s}$
- Heat Rate $\Delta Q (x,y,z)/\Delta t = E_{MeV/ph}(x,y,z) N_{ph/"train,"}/\Delta t_{"train"} (\Delta Q/\Delta t)_{max} = 3.1 \times 10^{12} \text{ W/m}^3$

ANSYS Heat Source:

$$\Delta Q(x,y,z)/\Delta t$$
, for $t < \Delta t_{"train"}$
0, for $t > \Delta t_{"train"}$

Task: to find max. stress shortly after the end of bunch train

Analytical approach

 Can we 'understand' the model ANSYS uses ? Potential for improvement?

Instantaneous stress induced by abrupt change of temperature is propagated as a 'stress-wave' with a speed of sound

- Analytical approach:
 - Major work done already by Peter Sievers
 - Important calculation be Vlevoshkaja
 - Ongoing calculation by Kikuchi (+ Peter)
- Our appoach (PhD student: Olufemi Adeyemi):
 - Use continuum medium
 - Calculate stress tensor via Cauchy equation
 - Solve partial differential equation for pressure

Analytical equations

1. Energy deposition causes stress in material:

Partial Differential Equation:

$$\frac{\partial^2 P}{\partial t^2} - \nabla \cdot (c_s^2 \nabla P) = \frac{\Gamma}{V} \frac{\partial^2 Q}{\partial t^2}$$

- -Solution depend on assumptions for energy deposition
- -Solution depends crucially on boundary conditions
- 2. Energy deposition gets dissipated: heat diffusion

Partial Differential Equation:

$$\frac{\partial T}{\partial t} = \chi \nabla^2 T + \frac{1}{V \rho c_p} \frac{\partial Q}{\partial t}$$

3. Incorporation of multi-bunch effect

Models for spatial energy deposition

Olufemi

Rectangular (uniform) distribution

Triangular (linear) distribution

- Gaussian (normal) distribution
 - as normal

Boundary Conditions

Dirichlet problem:

Grüneisen coeff.

Initial condition:

Boundary condition: the pressure at both end is zero at all time

$$P(0, t) = 0,$$

$$P(L, t) = 0,$$

Boundary Conditions

von Neumann problem:

Initial condition:

$$P(z,0)=rac{\Gamma}{V}Q(z),$$
 $rac{\partial P}{\partial t}igg|_{t=0}=0, \ \longleftarrow$ Same as for Dirichlet

and boundary conditions:

$$\frac{\partial P}{\partial z}\Big|_{z=0} = 0 = \frac{\partial P}{\partial z}\Big|_{z=L}$$

Target geometry

Case 1: Thin rod

- Case 2: Thin disc
 - Radius R
- Case 3: The cylinder (2 dim, since axial symmetric)
 - Radius R and longitudinal z
- We have analytical solutions for all 3 cases for both boundary classes

Some results for a thin disc

v. Neumann boundaries + uniform energy deposition

Disc: uniform deposition

At r=0:

 $P[\Gamma Q_0/V]$

t/s

Disc: uniform deposition

At r=R:

 $P[\Gamma Q_0/V]$

t/s

Disc: Linear Deposition

Disc: Linear Deposition

At r=0:

 $P[\Gamma Q_0/V]$

t/s

Disc: Linear Deposition

At r=R:

 $P[\Gamma Q_0/V]$

t/s

Next steps

Inclusion of damping effects

Figure: $\left(\frac{4\Gamma^2 Q_0 L^2 T_0 c_\rho \rho}{V \pi^2}\right) \times P[Pa] \text{ vs. } t[s]$

- Inclusion of multi-bunch effect
- If possible: numerical evaluation of analytical solutions of cylinder case in 2-dim
- Finishing writing the thesis,....

Further plans

- Test of thermo-mech. dynamics of target materials
- Different material tests
- Simulation of alternative cooling methods
- Optimization of optics

Target tests might be crucial!

- Experiment:
 - mimick high power γ's by pulse e- (bunch spacing shorter!)
 - smashing on target materials
 - About same heat deposition as at ILC target
 - Due to c.w.: any repition rate possible → artificial aging

- γ-radiation heats target without steep gradient
- No powerful γ-source available → mimick by electron_pulses
- Check if (non-moving) material gets destroyed (single pulse+fatigue)
- Electrons mainly ionize the (thin) material if E_{beam}<E_{krit}~10MeV.
- Reduce beam size and target thickness until dE/dV is achieved for available electron beam
- MAMI c.w. injector: 1mA/3.5MeV
- At MAMI typical beam spot size is 0.1 mm (ILC~mm)
- Due to c.w. capability arbitrary repetition rate possible → "artificial aging"

Conclusions

- Detailed simulations (ANSYS) and involved analytical evaluations under work
 - Dynamical stress should be at an acceptable level for all drive beam energies
 - So far: konservative model used in ANSYS (rotation not yet included, etc.)
 - Analytical calculations promising: solutions exist for both boundary conditions and several target geometries
 - Damping and multi-bunch effect still missing in analytical approach
- Concrete plans for involved target material tests planned
 - Should provide reliable info about dynamics of thermic stress at LC target