

Light Higgsinos Precision Measurements at the ILC

08/10/2014 LCWS14, Belgrade, Serbia

M. Berggren, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, H. Sert, <u>Y. Voutsinas</u>

Outline

- Introduction to the scenario
 - Higgsino's production, decay & SM bkg
- Analysis
 - Fast simulation analysis results
 - Going to full sim challenges
 - Particle identification
 - Beam bkg

Introduction

- SUSY still hasn't be discovered in LHC
 - M (squarks) > 1.7 TeV, M(gluinos) > 1.3 TeV
- Still space left for MSSM with
 - SM like Higgs (m_h=126 GeV)
 - Light EW sector
 - Coloured sector beyond LHC discovery limit
- LHC put limits at the light EW sector
- But...
- When $\mu << M_1, M_2$
 - Mass degenerate light states
 - Very challenging for LHC

ATLAS CONF 2013-035

Intro to Light Higgsino's Scenario

$$m_Z^2 = 2 \frac{(m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta - m_{H_d}^2 - \Sigma_d^d}{1 - \tan^2 \beta} - 2|\mu|^2$$

- Naturalness requires µ at the EW scale
- Scenario
 - ightarrow 3 light higgsinos $ilde{\chi}_1^\pm$ & $ilde{\chi}_1^0$ & $ilde{\chi}_2^0$
 - Almost mass degenerate
 - No other SUSY particles with masses < 1 TeV</p>

Production

- Via Z, y exchange in s - channel
- Strong polarisation dependence for charginos, weaker for neutralinos
- t channel suppressed for both

Mass Spectrum

Particle

h

 $\tilde{\chi}_2^0$

Mass (GeV)

124

164.17 165.77

166.87

 $\sim 10^3$

 $\sim 2 - 3 \times 10^3$

Mass	Spectrum

Particle	Mass (GeV)
h	127
$ ilde{\chi}_1^0$	166.59
$ ilde{\chi}_1^{\pm}$	167.36
$ ilde{\chi}_2^0$	167.63
H's	$\sim 10^3$
$ ilde{\chi}$'s	$\sim 2-3 \times 10^3$

$$\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 0.77 \text{ GeV}$$

2 benchmark points, dM1600 & dM770

Decay & SM bkg

- Chargino & neutralinos decay modes
- Result to few soft particles & missing energy
 - P_T spectrum at generator level
- Main SM bkg processes

$$\rightarrow$$
 $e^+e^- \rightarrow \tau^+\tau^-$

- $\qquad \qquad e^+e^- \, \rightarrow \, \tau^+\tau^-\nu\nu$
- \rightarrow $e^+e^- \rightarrow V^*V^* \rightarrow ff$
- Requirement for a hard ISR
 photon (E_{ISR}>10 GeV) suppresses bkg
- y → 3f dominant remaining bgk
- Seperation of chargino neutralino processes
 - Chargino: require semi-leptonic decay
 - Neutralino : require photon

$$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 W^{\pm *}$$
 $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 Z^{0*}$

$$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \gamma$$

$m_h=124\; \text{GeV}$	$m_h=127\; \text{GeV}$
ΔM =1.59 GeV	ΔM =0.77 GeV
$e/\mu + \pi^{\pm}(\pi^0)$	$e/\mu + \pi^\pm$
BR = 30.5%	BR = 35%

$m_h = 124 \text{ GeV}$	$m_h = 127 \text{ GeV}$
$BR(\gamma) = 23.6\%$	$BR(\gamma) = 74.0\%$

Analysis Overview

Data sample

- \sqrt{s} 500 GeV, 500 fb⁻¹ for each P(e⁺,e⁻) = (+-30, -+80)
- Cross sections calculated by Whizard

	$m_h=124\; { m GeV}$		$m_h=127\; { m GeV}$	
Processes	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^0 ilde{\chi}_1^0 \gamma$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^0 ilde{\chi}_1^0 \gamma$
$\sigma(e_L^+e_R^- o ilde{\chi} ilde{\chi}\gamma)$	26.83 ± 0.05	61.66 ± 0.10	26.28 ± 0.05	60.92 ± 0.10
$\sigma(e_R^+e_L^- o ilde{\chi} ilde{\chi}\gamma)$	132.99 ± 0.23	80.12 ± 0.13	130.05 ± 0.22	79.16 ± 0.13

- Fast ILD simulation in SGV
 - See Mikael Berggren, physics.ins-det 1203-0217
 - > Tracking efficiency of ILD estimated with full sim., parametrised for 4 polar angle values, has been implemented in SGV
- Goals of the study
 - Mass measurement of chargino & neutralinos
 - Mass difference measurement
 - Statistical precision on polarised cross section
 - The measured uncertainties has been used in a fit to estimate MSSM parameters $\rm M_{_{2}}, \, \mu$

Fast Simulation Results Summary

Chargino mass measurement

```
> DM1600: M_{REC} = 166.2 \pm 2.0 \text{ GeV} (M_{TRUE} = 165.8 \text{ GeV})
> DM770: M_{REC} = 167.3 \pm 1.5 \text{ GeV} (M_{TRUE} = 167.4 \text{ GeV})
```

Chargino – LSP mass difference

```
> DM1600: \Delta M_{REC} = 1630 \pm 270 \text{ MeV}
> DM770: \Delta M_{REC} = 810 \pm 40 \text{ MeV}
```

Polarised chargino cross – sections precision

```
For P(e^+,e^-) = (+-30, -+80), \delta\sigma/\sigma = 1.9\% (1.6%) for dM1600 (dM770)
```

Neutralino mass measurement

```
> DM1600: M_{REC} = 169.6 \pm 3.3 \text{ GeV} (M_{TRUE} = 166.9 \text{ GeV})
> DM770: M_{REC} = 165.7 \pm 1.6 \text{ GeV} (M_{TRUE} = 167.6 \text{ GeV})
```

Polarised chargino cross – sections precision

For
$$P(e^+,e^-) = (+-30, -+80)$$
, $\delta\sigma/\sigma = 3.2\%$ (1.7%) for dM1600 (dM770)

Parameter Determination

- 4 parameters defining chargino neutralino sector @ tree level
 - \rightarrow M_1 , M_2 , μ , tan β
- Measurements used for extraction
 - > Neutralino chargino masses, mass difference, $\delta\sigma/\sigma$
 - tanβ can't be constraint fixed to values in range 1-60
- For M_1 , M_2 obtain lower limits allowed region
 - M₁, M₂ strongly correlated
 - μ determination precision
 - ~ 2.5 GeV (dM770), ~ 6.8 GeV (dM1600)
- Expected improvement from high luminosity run
 - Narrows the allowed region for μ by 2-3.5 GeV

$0.500 \; \mathrm{fb}^{-1}$	input	lower	upper
$ M_1 $ [TeV]	1.7	$\sim 0.8(-0.4)$	no
M_2 [TeV]	4.4	$\sim 1.5(1.0)$	no
$\mu \; [GeV]$	165.7	165.2	172.5

0.500 fb^{-1}	input	lower	upper
$ M_1 $ [TeV]	5.3	$\sim 2(-0.3)$	no
M_2 [TeV]	9.5	$\sim 3(1.2)$	no
$\mu \; [GeV]$	167.2	164.8	167.8

@ 2 ab ⁻¹	input	lower	upper
M_1 [TeV]	1.7	$\sim 1.0 \; (-0.4)$	~ 6.0
M_2 [TeV]	4.4	$\sim 2.5 (3.5)$	~ 8.5
$\mu \; [GeV]$	165.7	166.2	170.1

@ 2 ab ⁻¹	input	lower	upper
M_1 [TeV]	5.3	~ 3	no
M_2 [TeV]	9.5	~ 7	~ 15
$\mu \ [{\sf GeV}]$	167.2	165.2	167.4

From Fast to Full Sim.

- Fast sim conclusions
 - Light Higgsinos can be resolved in ILC
 - > Precision in masses & cross section measurement sufficient to constraint $\mu,\,M_{_1}$ and $M_{_2}$
- Going to full simulation
- Open issues:
 - ▶ Low P_T particle identification
 - Muons identified as pions
 - \rightarrow Low P_T tracking in the presence of beam bkg
 - Effect of "bad" tracks should be studied
 - yy → hadrons overlay

Particle Identification

- Low P_T muons are reconstructed as pions!
- Trying a likelihood methode
- Determine proper discriminating variables & apply TMVA analysis
 - Cluster E / track P
 - Depth of cluster vs incident angle
 - Mean radius of hits
 - RMS of hits radius

Rmean [mm]

Particle Identification using TMVA

Response for different momenta Signal: muons, bkg:pions

0.5 GeV

1.5 GeV

1.0 GeV

2.0 GeV

Including beam bkg

- Very soft particles in final state
- Tracking efficiency according to ttbar sample + pair bkg implemented in SGV
 - > Despite the relatively low efficiency for low P_{τ} tracks, the analysis is feasible

 $\frac{1}{2}$ ~ 99.7% eff, P≥ 1 GeV, ≥ 99.8%, cos(θ) < 0.95

Efficiency for higgsino sample + pair bkg for a proposed CMOS VXD, std vs new tracking algo

Including beam bkg - "bad" tracks

- ILD VXD integrates over several Bxs (depending on sensor technology design parameters)
 - Dominate the occupancy
 - DBD VXD for higgsino sample
 - "physics" hits O(10)
 - Bkg hits O(10⁴)
- Effect of ghost pair bkg tracks has not be studied
- Pattern recognition can rule out most of them
 - Still "bad" track rate ≥2
 - ightharpoonup Bad track rate strongly correlated with track finding for low $P_{\scriptscriptstyle T}$ particles

Summary – Outlook

- Naturalness leads to light higgsinos
- The scenario has been studied for ILC in fast sim
 - Determination of μ to few % level
 - M_1 , M_2 constraint to a narrow band
- Moving to full simulation studies
 - Work in progress
 - Particle identification for low P_{τ} particles with high efficiency purity
 - Low P_T tracking in the presence of beam bkg
 - Can we reconstruct signal particles and get rid of the pair bkg particles?
 - Benchmark for VXD specifications

BACKUP

Mass Measurement Procedure

Fitting Procedure

- Fitting is done in the following order:
 - SM background is fitted with a convenient function assuming that we can precisely predict SM background.
 - SM background is fixed.
 - SM background + Signal are fitted using linear function for signal.

- SM Fit Function: Exponential
- Signal Fit Function: Linear

- SM Fit Function: Linear + Gaussian
- Signal Fit Function: Linear

$\tilde{\chi}_1^+$ Mass Measurement & Calibration

Mass Difference Measurement

