

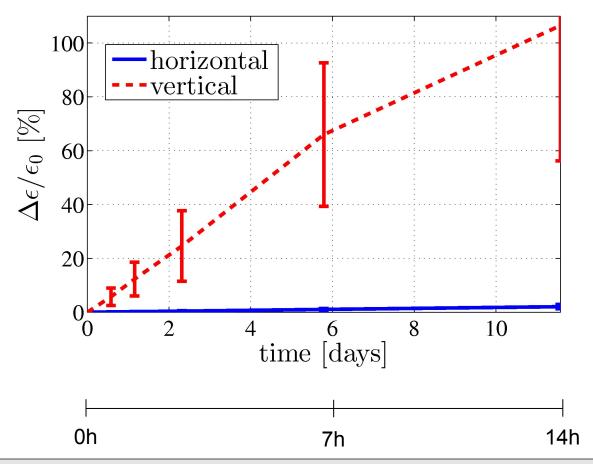
Improved imperfection tolerances for an on-line dispersion free steering algorithm

Jürgen Pfingstner

8th of October 2014

Content

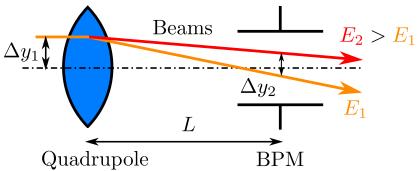
- 1. Introduction
- 2. Resolution of the wakefield monitors
- Tilt of the accelerating structures
- 4. Conclusions



1. Introduction

Long-term ground motion in the CLIC ML

- Start from perfectly aligned machine
- ATL motion and 1-2-1 correction applied
- $\varepsilon_x = 600$ nm $\varepsilon_y = 10$ nm
- 10 samples
- Emittance growth can be corrected with the DFS algorithm.


A =
$$0.5^{-6}$$
 um²/m/s
A = 10^{-5} um²/m/s

Dispersion-free steering (DFS)

- Principle:
 - 1. The dispersion η at the BPMs is measured by varying the beam energy.
 - 2. Corrector actuations Δy_1 are calculated to minimise dispersion η and the beam orbit b.

Considering many BPMs and quadrupoles leads to linear system of equations:

$$\begin{bmatrix} \boldsymbol{b} - \boldsymbol{b_0} \\ \omega (\boldsymbol{\eta} - \boldsymbol{\eta_0}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{R} \\ \omega \boldsymbol{D} \\ \beta \boldsymbol{I} \end{bmatrix} \Delta y_1$$

DFS is usually applied to overlapping sections of the accelerator (36 for ML of CLIC).

On-line DFS

- Problem: only very small beam energy variation acceptable (< 1 per mil).
- Measurement are strongly influenced by BPM noise and usual energy jitter.
- Therefore, many measurement have to be averaged.
- Use of a Least Squares estimate (pseudo-inverse), which can be significantly simplified by the choice of the excitation:

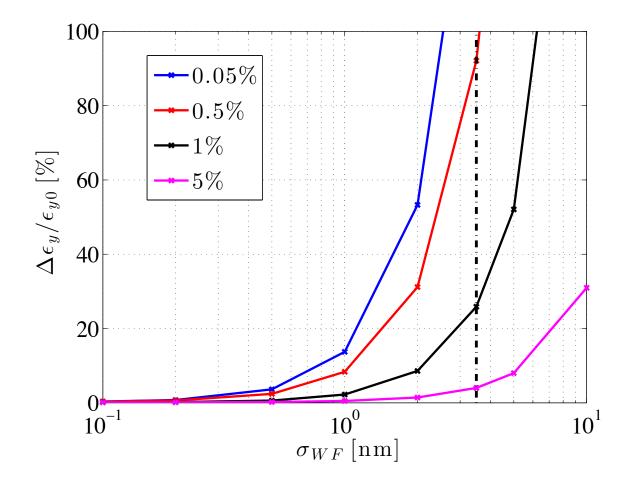
$$\eta_{N} = (\mathbf{E}^{T} \mathbf{E})^{-1} \mathbf{E} \mathbf{b} = \frac{T_{N}}{N \Delta E}$$

$$\mathbf{E} = \begin{bmatrix} -\Delta E \\ +\Delta E \\ ... \\ -\Delta E \\ +\Delta E \end{bmatrix}$$

$$T_{N} = \sum_{i=1}^{N} (-1)^{i} b_{i}$$

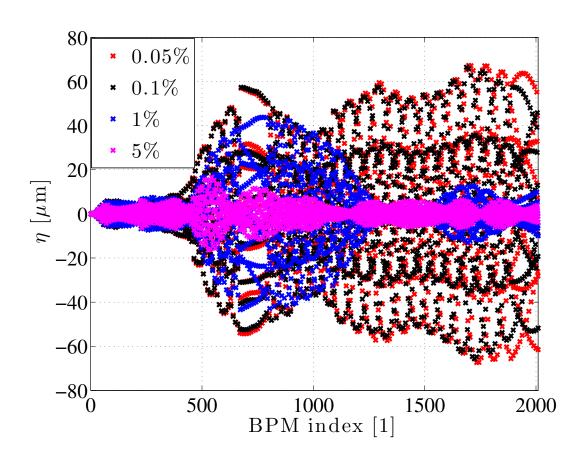
Prior results

- On-line DFS showed excellent correction results with respect to ground motion misalignments (ATL motion):
 - Correction to below 10% emittance growth
 - Necessary time about 10 min.
- Also the following imperfections were tested and caused not problems:
 - BPM noise.
 - Coherent and incoherent energy jitter of the acceleration gradients.
 - Different errors in the correction matrices:
 - BPM noise.
 - Energy errors.
 - Linearity errors of BPMs.
 - · Quadrupole movers breakdown.
- The algorithm was however too sensitive with respect to two imperfections:
 - Resolution of wakefield monitors.
 - Tilt of accelerating structures.



2. Resolution of the wakefield monitors

High sensitivity to remaining wakefields after RF alignment



- Only large energy changes for the dispersion measurement are acceptable.
- For the target energy change of 0.05% the correction performance is unacceptable.

Measured dispersion with only RF alignment.

- No quadrupole misalignment.
- No wakefield produced from head motion (no head motion).
- Only wakefield from structure misalignment (random fashion).
- Tail motion creates average beam offset.
- Offset change is linear with energy change for small ΔE.
- For larger ΔE, effect becomes does not grow and dispersion signature becomes smaller.

Explanation of the effect (2 particle model)

Motion of head particle (for last experiment on last slide):

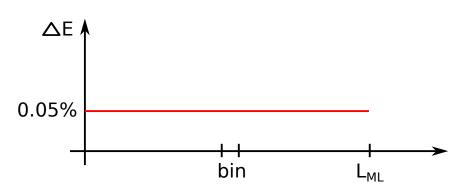
$$x_H = 0$$

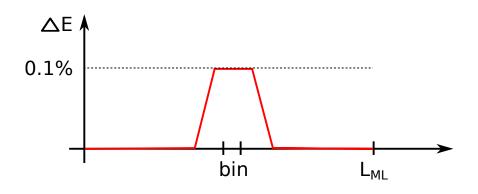
Equation of motion for tail particle with reference energy E₀:

$$\frac{d^2 y_{T,E_0}(s)}{ds^2} = \frac{eE_y - eB_x}{E_0} = \frac{e^2 N_0 W_t y_{st}(s) - ecg(s) y_{T,E_0}(s)}{E_0}$$

• Equation of motion for tail particle with increased energy $E_0 + \Delta E$:

$$\frac{d^2 y_{T,E_0 + \Delta E}(s)}{ds^2} = \frac{e E_y - e B_x}{E_0 + \Delta E} = \frac{e^2 N_0 W_t y_{st}(s) - e c g(s) y_{T,E_0 + \Delta E}(s)}{E_0 + \Delta E}$$

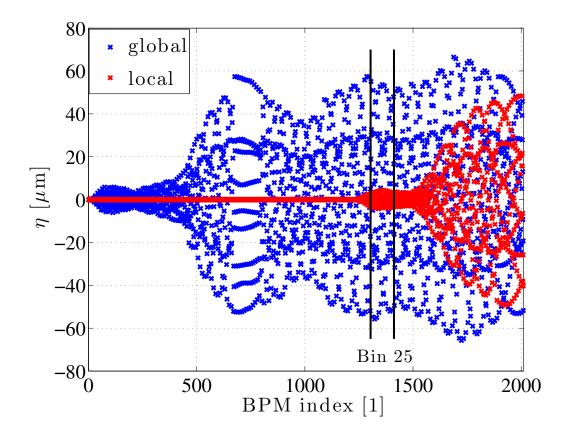

- These equations are clearly different. The tails of the bunches will form differently for different beam energies.
- Since the energy difference is small the differences for only after a certain distance (see last slide).
 - From Newton's law and Lorentz force
 - Ultra-relativistic approximation


Solution with local energy change

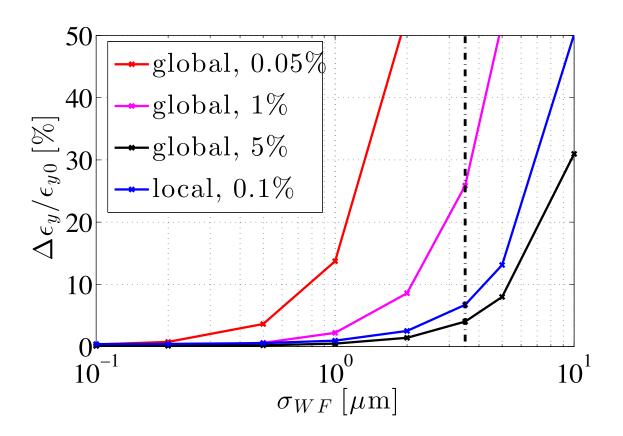
1. Global energy change:

Simple, since all acceleration gradients are changed equally

2. Local energy change:

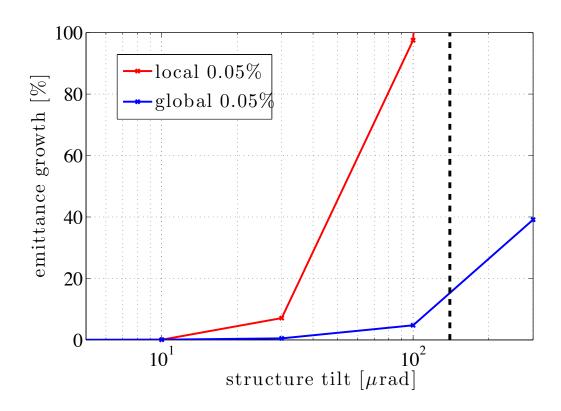


- Change of only the gradients in the decelerators before, at and after the bin to correct
- Beam travels only over a short distance with different energies
- Remove ΔE after corrected bin
- A higher ΔE can be used


Measured dispersion with only RF alignment and local energy changing

Results with local energy change

- Local scheme with 0.1% shows similar behaviour than global excitation with 5%
- The increase of emittance due to the nominal CLIC wake field monitors resolution is about 6%.



3. Tilt of acceleration structures

High sensitivity to the tilt of the accelerating cavities

- At nominal tilt of 140urad, the performance of local DFS is unacceptable
- The global DFS version is much better, but also creates significant emittance growth.

Singular value filter

Write calculation of correction with help of singular valued decomposition:

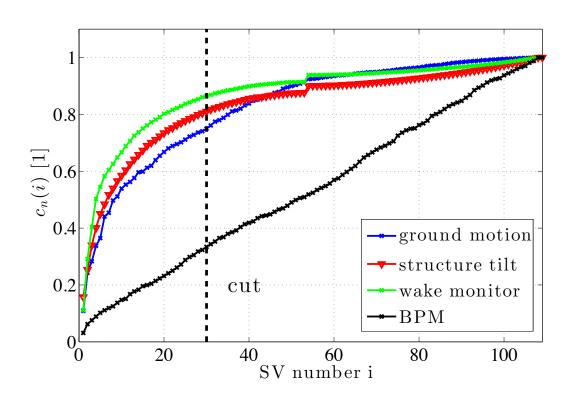
$$\Delta y_{QP} = \begin{bmatrix} R \\ \alpha D \end{bmatrix}^{\dagger} m = C^{\dagger} m = V S^{-1} U^{T} m$$
 with $C = U S V^{T}$

 A filter can be easily produced by weighting the different modes or simply by not using time:

$$\Delta y_{QP} = VS^{-1}WU^Tm$$
 with $W = \operatorname{diag}(w_i)$ and $w_i \in \{0,1\}, \forall i \in \{1, ..., N\}$

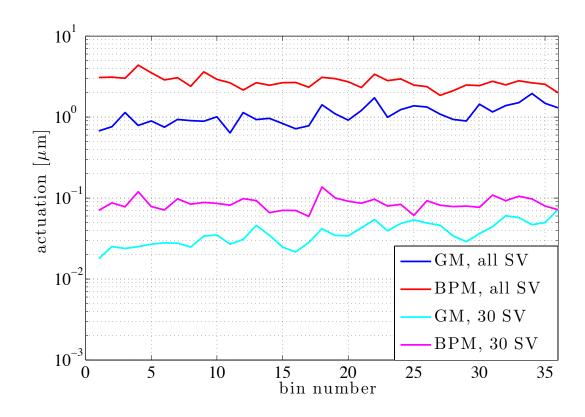
• To identify which modes should be cut away, the projections p(i) are studied:

$$\begin{bmatrix} p_1 \\ \vdots \\ p_N \end{bmatrix} = U^T m = \begin{bmatrix} u_1^T \\ \vdots \\ u_N^T \end{bmatrix} m$$


Easier to interpret is the cumulated sum c(i) of the p(i) the normalised version c_N(i):

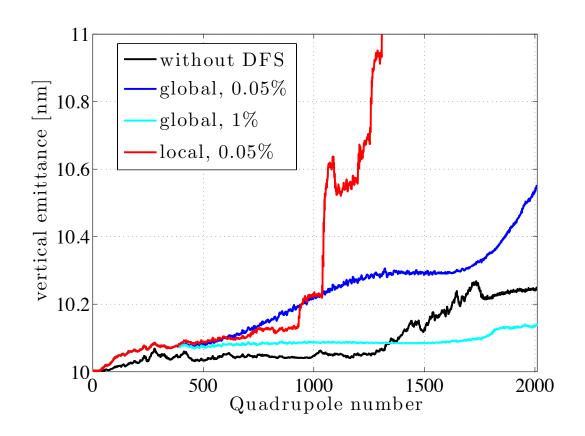
$$c(i) = \sum_{l=1}^{i} p(l)$$
 and $c_N(i) = \frac{c(i)}{c(N)}$

Projection of measured dispersion on singular value modes



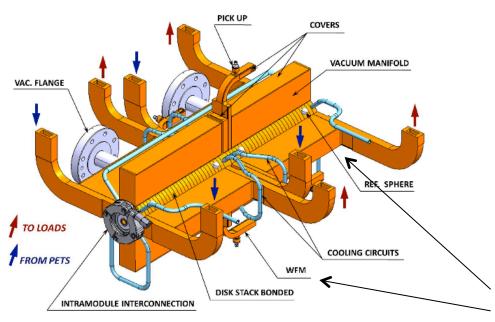
- With cut at SV 30, ground motion correction still very good.
- Unfortunately, influence of structure tilt and wake monitor cannot be reduced.
- Impact only, if SV 1
 or 2 are cut, but they
 are also essential for
 ground motion
 correction.

Result with SV filter: Reduction of corrector actuation



- The SV filter is efficient in reducing the amplitude of the calculated corrections:
 - Before: about 3um
 - 30 SV: 0.1um
- Further reduction seems possible.
- Tripod stabilisation system has range of +/- 5um.
- Stabilisation system could be used for DFS.

Some observations


- Global DFS works by far better than local one.
- Global DFS works better for larger energies.
- Next steps will be to understand the behaviour of the global DFS, since also there the energy dependence is not understood.

Structure tilt alignment

- In case problem cannot be solved and on-line DFS is wanted, an other option would be a structure tilt alignment.
- An algorithm like tilt-free steering would most likely take to long due to the large number of structures.
- Use two wakefield monitors instead of one:

- Two structures are combined to one unit.
- One wakefield monitor per unit. (beginning of second structure)
- Wakefield monitor also in the first structure.

Wake field monitor

4. Conclusions

- On-line DFS works well to correct emittance increase due to ATL motion.
- Many imperfections have been tested and only two created problems.
- The resolution of the wake field monitors:
 - Cause problems because the bunch tails form different for different energies.
 - Problem could be resolved with local excitation.
 - Still work on analytical model ongoing.
- Tilt of acceleration cavities
 - Attempts to filter the dispersion signal from cavity tilts with singular value filter were not successful.
 - Many interesting observations, but not solution to the problem yet.
- Tests with the SV filter showed that only actuations in the 0.1um level are necessary for the corrections. Stabilisation system would be largely sufficient.
- Test of the sensitivity to actuator noise have to be performed.

Thank you for your attention!