ILC BDS Designs with TDR parameters

Edu Marin¹

¹SLAC, (USA)

October 7th, 2014 Accelerator: Beam Delivery System LCWS14

Outline

- Objectives
- 2 Design Strategy
- Designed Lattices
 - Optics
 - Properties
- Tolerances
 - Energy Bandwidth
 - Alignment
 - Magnet Strength
- Conclusions

OBJECTIVES

Objectives

bjectives

Design ILC-BDS lattices for 3 different L* ($E_{CM} = 500 \text{ GeV}$)

- 3.51 m (foreseen in the TDR)
- 4.0 m (new proposal)
- 4.5 m (foreseen in the TDR)

Assuming TDR parameters:

$$\beta_{\chi}^{*} = 11 \text{ mm}$$
 $\sigma_{\chi}^{*} = 474 \text{ nm}$ $\beta_{\nu}^{*} = 0.48 \text{ mm}$ $\sigma_{\nu}^{*} = 5.9 \text{ nm}$

Considered initial lattice to work with: ILC2012b

- Remove 1.69 m of D2B to match the CFS length
- Split QF7 in 2 magnets (QF7B,QF7A) (0.5 m apart)
- Insert BPM in between the QF7s (MIP)

DESIGN STRATEGY

Lattice Design Strategy

Following partially the recipe described at SLAC-PUB-9895

- adjust quadrupoles QF1 and QD0
 - to set $\alpha_{x,v}$ at exit of FD
- adjust quadrupoles from QD2 to QF7
 - to set $\alpha_{x,y}$ at image point (MIP) equal to 0
 - \bullet $\Delta \mu_{x,y} = n\frac{\pi}{2}$
 - $R_{ii}^{SF1-SF6}=1$
 - $R_{ii}^{SD0-SD4} = -1$
- adjust matching quadrupoles
 - to match the incoming $\beta_{x,y}$ and $\alpha_{x,y}$
 - to set $\Delta \mu_{Y,Y}^{Coll-IP} = n_{\overline{D}}^{\pi}$

Objectives

Phase advances between Collimation section and IP:

- from SPEX (E-collimation) to IP: $\Delta \mu_{x,y} = n\frac{\pi}{2}$
- from SP4 (β -collimation) to IP: $\Delta \mu_{x,y} = n\frac{\pi}{2}$
- from SP2 (β -collimation) to SP4: $\Delta \mu_{x,y} = n\frac{\pi}{2}$
- adjust SD0, SF1, SD4, SF5, SF6, OC10, OC1, OC0, DEC4L and DEC6L
 - $\sigma_{\nu}^* = 474 \text{ nm}$
 - σ_{v}^{*} = 5.8 nm

DESIGNED LATTICES

Optics

ILC-BDS L*=3.51 m, 4m, 4.5m

Properties

ILC-BDS Designs

Twiss:

	Unit	L*=3.51m	L*=4m	L*=4.5m
$\beta_{x,y}^*$	[mm]	10.9 , 0.48	11.2 , 0.48	11.2 , 0.48
$\alpha_{x,y}^*$		0.0 , -0.2	0.0 , 0.0	0.1 , 0.2
$\eta_{X,V}^*$	$[\mu m]$	10,0	-0.3 , 0	15 , 0.0
$\alpha_{x,y}$ (MIP)		0.0,0.0	0.0 , 0.4	0.1 , 0.5
$\sigma_{X,V}^*$ (rms)	[nm]	487, 6.0	484 , 5.9	489 , 6.0
$\sigma_{x,y}^*$ (core)	[nm]	487 , 5.9	480 , 5.8	484 , 6.0

Phases:

			Unit	L*=3.51m	L*=4m	L*=4.5m
Ì	$\Delta \mu_{X,Y}$	(FB-IP)	$[2\pi]$	1.25 , 1.24	1.24 , 1.25	1.25 , 1.24
	$\Delta \mu_{x,y}$	(MIP-IP)	$[2\pi]$	1.0 , 1.0	1.0 , 1.0	1.0 , 1.0
	$\Delta \mu_{X,y}$	(SP4-IP)	$[2\pi]$	2.69 , 2.83	2.68 , 2.37	2.35 , 1.71
	$\Delta \mu_{X,y}$	(SPEX-IP)	$[2\pi]$	2.30 , 2.24	2.30 , 1.78	2.75 , 2.29
	$\Delta \mu_{x,y}$	(SP2-SP4)	$[2\pi]$	0.25 , 0.75	0.25 , 0.75	0.25 , 0.75

Energy Bandwidth

Energy Bandwidth

Objectives

Tolerances Evaluation

Each tolerance has been evaluated as

$$\Delta \sigma^* \implies \Delta \mathcal{L} = 2\%$$
 assuming,
$$\mathcal{L} \sim \frac{1}{\sigma_x^* \sigma_y^*}$$

- Tolerance before and after linear aberrations subtraction. are calculated
 - Dispersion
 - Waist shift
 - Coupling

Alignment

Horizontal

Alignment

Vertical

Alignment

Tilt

Magnet Strength

Magnet Strength

CONCLUSIONS

Conclusions and Future Work

- The ILC-BDS lattice for 3 different L* have been obtained
- All lattice satisfy the beam size requirements
- BDS with L*=4.5m shows tightest energy bandwidth and alignment tolerances

 The required B field precision of FD is below 10⁻⁴ in all designs

Next steps:

- Final adjustments of phases between collimation and IP
- Optimization without OCTs and DECs