

Non-interleaved FFS design

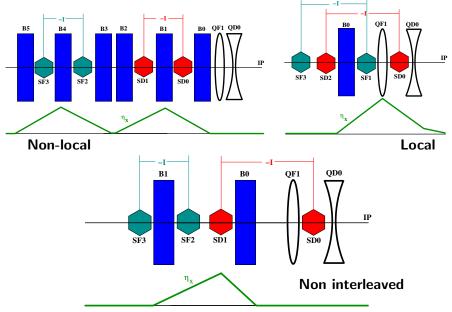
Oscar BLANCO^{1,2} LAL¹, CERN²

Table of contents

Chromaticity correction

Some design criteria

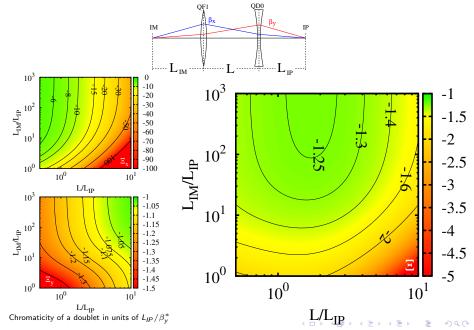
Chromaticity minimization Oide effect Geometrical cancellation Second order terms, T116, T166,... Radiation in bending magnets


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

500GeV Non-interleaved Lattice

Conclusions

Chromaticity correction


Local, Non-local and Non-interleaved correction

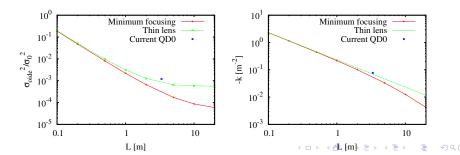
▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Some design criteria

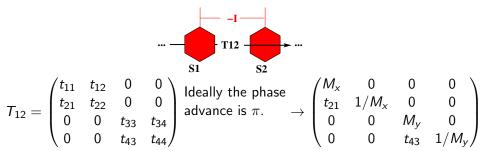
Chromaticity minimization

Oide effect

For the vertical plane,


$$\sigma_{oide}^{2} = \frac{110}{3\sqrt{6\pi}} r_{e} \frac{\lambda_{e}}{2\pi} \gamma^{5} F(\sqrt{k}L, \sqrt{k}I^{*}) \left(\frac{\epsilon}{\beta^{*}}\right)^{5/2}$$
(1)

~


where

$$F(\sqrt{k}L,\sqrt{k}I^*) = \int_0^{\sqrt{k}L} |\sin\phi + \sqrt{k}I^*\cos\phi|^3 \left[\int_0^{\phi} (\sin\phi' + \sqrt{k}I^*\cos\phi')^2 d\phi'\right]^2 d\phi$$
(2)

Oide effect at the Final Doublet is negligible for 500 GeV

-1 transformation (geometrical terms cancelled)

 $\Delta \phi$ represents the phase advance error.

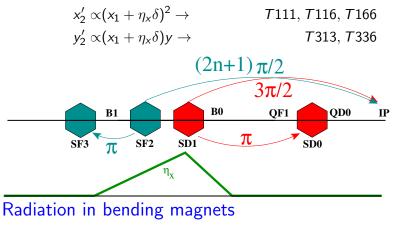
$$t_{11}t_{22} = 1 - (\alpha_{x2} - \alpha_{x1})\Delta\phi_x$$

$$t_{33}t_{44} = 1 - (\alpha_{y2} - \alpha_{y1})\Delta\phi_y$$

$$t_{12} = \sqrt{\beta_{x1}\beta_{x2}}\Delta\phi_x$$

$$t_{34} = \sqrt{\beta_{y1}\beta_{y2}}\Delta\phi_y$$

and


$$0 = \beta_{y2}/\beta_{y1} - \beta_{x2}/\beta_{x1}$$

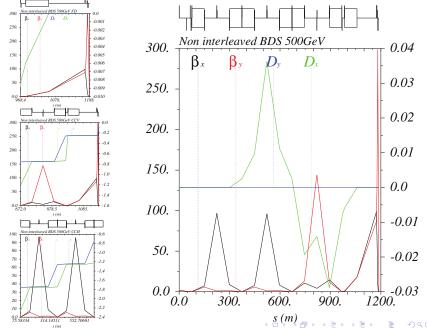
 $\alpha \Delta \phi \ll 1$ $M > 1, \beta \Delta \phi < 1$ $M_x - M_y \ll 1$, it will set a limit to the cancellation of geometrical terms in both planes at the same time, when matching the sextupoles.

・ロト ・ 母 ト ・ 目 ト ・ 目 ・ うへぐ

Second order terms, T116, T166,...

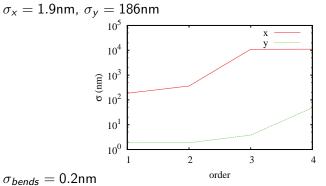
One of the paired sextupoles is in a horizontal dispersive region ($\eta_x \neq 0$). The kick there will be

$$\sigma_{bend}^2 \propto \int_0^{IP} \frac{E^5}{
ho^3} t_{16}(s, IP)^2 ds$$


Enough dispersion to cancel chromaticity but not to much due to radiation.

500GeV Non-interleaved Lattice

Current 500 GeV Lattice Parameters (from CDR)


Parameter [Units]	Value
Length (linac exit to IP distance/side [m])	1750
Maximum energy/beam [TeV]	0.25
Distance from IP to first quad, L^* [m]	4.3
Crossing angle at the IP [mrad]	18.6
Nominal core beam size at IP, σ^* , x/y [nm]	202/2.3
Nominal beam divergence at IP, θ^* , x/y [μ rad]	25/23
Nominal beta-function at IP, β^* , x/y [mm]	8/0.1
Nominal bunch length, σ_z [μ m]	72
Nominal disruption parameters, D , x/y	0.1/12
Nominal bunch population, N	$6.8 imes10^9$
Beam power in each beam [MW]	4.9
Preferred entrance train to train jitter $[\sigma]$	< 0.2
Typical nominal collimation aperture, $x/y \ [\sigma_x/\sigma_y]$	10/55
Vacuum pressure level, near/far from IP $[10^{-9} \text{ mbar}]$	100/10

Non-interleaved CLIC 500 GeV

Non-interleaved CLIC 500 GeV (cont.)

The lattice desing gives linear (order=1) beam size of :

For the moment the biggest component in the horizontal plane is second order dispersion T166.

Conclusions

- The distance between the quadrupoles in the FD should be around one and two times the L*.
- Phase advance and beta ratios should be matched with enough precision to allow the geometrical terms cancellation.
- Sextupoles position should be placed to get a phase advance as close to (2n + 1)π/2 as possible.
- A non-interleaved line latice has been created from previous lattice designs and matched to these requirements. As a result, second order components in the vertical beam size were corrected and 25% horizontal beam size increase was obtained.
- Lattice length reduction, magnets optimization and tunning evaluation is foreseen.