Gain of beam polarization for the staged approach

G. Moortgat-Pick (Uni Hamburg/DESY)

- Technical status
- Polarization basics
- Physics applications for the staged approach
- Conclusions

Polarization: Technical facts

P(e+) (always yield ≥1.5 imposed):

P(e-) ~ 80-90%

- \sqrt{s} =240 GeV: 120 GeV e- drive beam
- Undulator with 231 m (K=0.92, λ=11.5 mm), collimator r=3.5 mm
- P(e+)~ 40%
- √s=350GeV: 175 GeV e- drive beam
- Collimator with r=1.2 mm, P(e+)~ 56%
- √s=500GeV: 250 GeV e- drive beam
- Undulator with 144 m, collimator r=0.7mm
- − P(e+)~59%

 \sqrt{s} =1 TeV: 500 GeV e- drive beam

A. Ushakov, LC note

- $-\lambda_u = 4:3$ cm, 176 m length, collimator r=0.9mm, K=2.5
- − P(e+)~54%

The LC physics offer

Staged approach:

- √s=240 GeV, `Higgs frontier'
- √s=350 GeV, `Top frontier'
- $-\sqrt{s}=500$ GeV, `Design energy frontier'
- (\sqrt{s} =91 GeV, `Precision frontier')
- − √s=1000 GeV, `Energy upgrade'

Technical facts II

- Measurent of polarization:
 - Compton polarimetry (up- and down-stream): δP/P=0.25%
 - Via WW-process (lumi-weighted!): δP/P(e-)~0.1%,
 δP/P(e+)~0.2-0.3%
- Helicity reversal required:
 - Fast reversal to benefit
 from higher L_{eff}=(1-P_{e-}P_{e+})L
 - Spin rotator before DR

For many processes (V, A interactions) one can write:

$$\sigma(P_{e-} P_{e+}) = (1 - P_{e-} P_{e+}) \sigma_0 [1 - P_{eff} A_{LR}]$$

- Effective polarization
 - $P_{eff}:=(P_{e_{-}}-P_{e_{+}})/(1-P_{e_{-}}P_{e_{+}})==(\#LR-\#RL)/(\#LR+\#RL)$
- Fraction of colliding particles
 - \rightarrow L_{eff}/ L=1/2 (1-P_e- P_{e+})=(#LR+#RL)/(#all)

	RL	LR	RR	LL	P_{eff}	$\mathcal{L}_{eff}/\mathcal{L}$
$P(e^{-}) = 0,$	0.25	0.25	0.25	0.25	0.	0.5
$P(e^+) = 0$						
$P(e^-) = -1,$	0	0.5	0	0.5	-1	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.05	0.45	0.05	0.45	-0.8	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.02	0.72	0.08	0.18	-0.95	0.74
$P(e^+) = +0.6$						

Impact of helicity flipping

- Gain in 'effective luminosity' only with P_e and P_e
 - → ~similar flip frequency for e- and e+ needed, otherwise this gain is lost:

e- trains
$$\begin{pmatrix} - \\ + \\ + \end{pmatrix}$$
 + $\begin{pmatrix} + \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} + \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} - \\ + \\ + \end{pmatrix}$ + $\begin{pmatrix} + \\ - \\ - \end{pmatrix}$ + $\begin{pmatrix} - \\ + \\ - \end{pmatrix}$ + $\begin{pmatrix} + \\ - \\ - \end{pmatrix}$ - $\begin{pmatrix} - \\ - \\ - \end{pmatrix}$ -

- 50% spent to 'inefficient' helicity pairing σ₊₊ and σ₋₋
- → gain due to xs enhancement for J=1 processes with e⁺ were lost!
- Gain in △Peff remains but flipping polarity needed to understand
 - → systematics and correlations P_e x P_e,

Quantitative P(e+) effects

If only (axial)vector couplings involved (SM):

S. Riemann, LC note

$$-\sigma_{pol} = \sigma_{unpol} (L_{eff}/L) (1-P_{eff} A_{LR})$$

$$\mathcal{P}_{\mathrm{eff}} = \frac{-\mathcal{P}_{\mathrm{e^-}} + \mathcal{P}_{\mathrm{e^-}}}{1 - \mathcal{P}_{\mathrm{e^-}} \mathcal{P}_{\mathrm{e^+}}} \hspace{0.3cm} \textbf{>} \hspace{0.1cm} \textbf{P}_{\textbf{e}}$$

If #events large: $\delta P_{eff}/P_{eff} \sim \delta A_{LR}/A_{LR}$

In general:

$$\delta A_{\rm LR} = \sqrt{\frac{1 - \mathcal{P}_{\rm eff}^2 A_{\rm LR}}{\mathcal{P}_{\rm eff} N} + A_{\rm LR}^2 \left(\frac{\delta \mathcal{P}_{\rm eff}}{\mathcal{P}_{\rm eff}}\right)^2}$$

- Enhancement of L_{eff}
- Reduction of δP_{eff}
- Better S/B, S/√B

- **←** More interactions!
- ← Higher accuracy

Impact of P(e+)

Statistics

And gain in precision

$$\Delta A_{LR}/A_{LR} = 0.3$$

$$\Delta A_{LR}/A_{LR} = 0.27$$

$$\Delta A_{LR}/A_{LR} = 0.5$$

gain: factor~3

factor>3

factor~2

NO gain with only pol. e- (even if '100% ')!

$P_{\it eff}$ and $L_{\it eff}$ for the staged approach

With the listed parameters:

\sqrt{s}	$P(e^-)$	$P(e^+)$	$P_{ m eff}$	$\mathcal{L}_{ ext{eff}}$ /L	$\frac{1}{x}\Delta P_{\rm eff}/P$	eff
total range	∓80%	0%	∓80%	1	1	← No gain!
250 GeV	$\mp 80\%$	$\pm 40\%$	∓91%	1.3	0.43	
$\geq 350 \text{ GeV}$	∓80%	$\pm 55\%$	$\mp 94\%$	1.4	0.30	
total range	∓90%	0%	∓90%	1	1	──
250 GeV	$\mp 90\%$	$\pm 40\%$	$\mp 96\%$	1.4	0.43	
$\geq 350 \text{ GeV}$	∓90%	$\pm 55\%$	$\mp 97\%$	1.5	0.29	
				\		Gain in precision
		n in arizatior		Gain ii numbe	_	oy more then a factor 3! (large N)
	(Alı	most 10	0%)	nterac	ctions!	, ,

Just by switching on P(e+)!

Impact of positron polarization

Four classes:

- Enhancement of specific cross sections "higher lumi"
- Changes weight between signal and background ... "higher lumi", but can achieved evtl. by clever cuts
- Provides more observables`unique"
- Since polarization=chirality: extracts new characteristics of interactions ``unique''
- In the following:
 - Relevance for different stages

Staged approach

- √s=250 GeV, `Higgs frontier': HZ production
 - Determination of couplings to c, b,g

$\Delta(\sigma^*BR)/(\sigma^*BR)$	250 GeV/250 fb ⁻¹ P = (-0.8,+0,3)	350 GeV/250 fb ⁻¹ P = (-0.8,+0,3)		
H→bb	1.0%	1.0%	>factor 10 better	than HL-LHC
H→cc	6.9%	6.2%	LC unique	[H.Ono, A: Miyamoto]
H→gg	8.5%	7.3%	LC unique	EPJC (2013) 73

- > This stage is crucial for model-independence via recoil method!
- Scaling factor about $\sigma_{pol}/\sigma_{unpol}$ ~(1-0.151 P_{eff}) * L_{eff}/L

- With $P_{e+}=0\%$: $\sigma_{pol}/\sigma_{unpol}\sim 1.13$

- With P_{e+} =40%: $\sigma_{pol}/\sigma_{unpol}\sim1.55$ (about 37% increase comp. to 0%)

Higgs +top sector

- \sqrt{s} =350 GeV: Higgs couplings and width:
 - In Higgsstrahlung: $\sigma_{pol}/\sigma_{unpol}\sim (1-0.151 P_{eff}) * L_{eff}/L$

With $P_{e+}=0\%$: $\sigma_{pol}/\sigma_{unpol}\sim 1.13$

With $P_{e+} = 55\%$: $\sigma_{pol} / \sigma_{unpol} \sim 1.71$ (about 50% increase comp. 0%)

- In WW-Fusion: $\sigma_{pol}/\sigma_{unpol}\sim (1 - P_{eff}) * L_{eff}/L$

With $P_{e+}=0\%$: $\sigma_{pol}/\sigma_{unpol}\sim 1.90$

With P_{e+} =55%: $\sigma_{pol} / \sigma_{unpol} \sim 2.95$ (about 55% increase comp. 0%)

• Important: Higgs width

(needed for BR's, model-ind. Coupl.)

250 GeV 350 GeV 500 GeV 11.0 % 3.6 % ← with (80%,30%) 3.2 %

Trilinear Higgs couplings

- Very important for establishing Higgs mechanism!
 - LHC estimates:
 - about Δλ_{HHH}~32% at HL-LHC (14 TeV, 3000fb⁻¹)
 - At LC: Very challenging (small rates, lots of dilution+backg.)

- Further improvement with P_{e+} = 55% instead of P_{e+} = 30%:
 - Same scaling factors as given before
 - In total: about 50% enhancement comp. to P_{e+}=0%!

Top sector

√s=500 GeV: top electroweak and top-Yukawa couplings:

Yukawa couplings: g_{ttH}

	500 GeV/ 1 ab-1	1000 GeV/ 2 ab ⁻¹
$\Delta g_{ttH}/g_{ttH}$	10%	4.6%

• $\sqrt{s=1000 \text{ GeV}} \cdot \Delta g_{ttH} / g_{ttH} < 4\%$

'Measure' for importance of beam polarization:

- If only $P_{e-}=80\%$: improvement of $\Delta g_{ttH}\sim19\%$ comp. with $P_{e-}=0$
- With P_{eff}=89%: improvement of $\Delta g_{ttH}\sim42\%$ (with 80%/30%)
- With P_{eff} =97%: improvement of Δg_{ttH} ~47% (with 90%,55%)

Top electroweak coupling

- $\sqrt{s}=500$ GeV: chiral structure of top couplings
 - Cross section ~maximal at this energy
 - Top's have sufficient velocity
 - A_{FR} well developed
- Use different observables
 - Cross section
 - A_{FB}
 - helicity angle

Coupling	SM value	LHC [1]	e+e- [6]	$e^+e^-[ILC\ DBD]$
		$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \; \text{fb}^{-1}$	$\mathcal{L} = 500 \; \text{fb}^{-1}$
			P, P' = -0.8, 0	$\mathcal{P},\mathcal{P}'=\pm0.8,\mp0.3$
$\Delta \widetilde{F}_{1V}^{\gamma}$	0.66	$^{+0.043}_{-0.041}$	_	$^{+0.002}_{-0.002}$
$\Delta \widetilde{F}_{1V}^{Z}$	0.23	$^{+0.240}_{-0.620}$	$^{+0.004}_{-0.004}$	$^{+0.003}_{-0.003}$
$\Delta \widetilde{F}^{Z}_{1A}$	-0.59	$^{+0.052}_{-0.060}$	$^{+0.009}_{-0.013}$	$^{+0.005}_{-0.005}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	0.015	$^{+0.038}_{-0.035}$	$^{+0.004}_{-0.004}$	$^{+0.003}_{-0.003}$
$\Delta \widetilde{F}_{2V}^{Z}$	0.018	$^{+0.270}_{-0.190}$	$^{+0.004}_{-0.004}$	$^{+0.006}_{-0.006}$

- Couplings measurable at %-level thanks to
 - the different observables
 - runs with different beam polarization configurations P(e-), P(e+)

Unique access to elecweak top couplings

Roman Poeschl, Lyon, Mai 2013

 \sqrt{s} =500 GeV

Results of full simulation study for DBD at $\sqrt{s} = 500 \text{ GeV}$

Effects of transverse beams \$\sigma_{s=500}\$ GeV

- Transversely-polarized beams in e+e- -> tt
 - probe scalar- and tensor-like interactions

Ananthanarayan, Patra, Rindani

Parametrization via eff. four-Fermi operators:

$$\mathcal{L}^{4F} = \sum_{i,j=L,R} \left[S_{ij}(\bar{e}P_i e)(\bar{t}P_j t) + T_{ij}(\bar{e}\frac{\sigma_{\mu\nu}}{\sqrt{2}}P_i e)(\bar{t}\frac{\sigma^{\mu\nu}}{\sqrt{2}}P_j t) \right]$$

- Use angular distributions with P^T_{e+} P^T_{e+}
 - Sensitive to azimuthal angle: specific asymmetries
 - Assumed 100% beams
- Sensitive to small
 S-,T-admixtures

\sqrt{s}	Case	Coupling	Individual limit from asymmetries			Individual limit from asymmetries		
			$A_1(\theta_0)$	$A_2(\theta_0)$	$A_{1}^{F\;B}\left(\theta_{0}\right)$	$A_2^{FB}\left(\theta_0 ight)$		
500GeV	+-	ReS ReT ImT	$1.2 \times 10^{-3} \text{TeV}^{-2}$	$2.3 \times 10^{-3} \text{TeV}^{-2}$		5.2 x 10 ⁻³ TeV ⁻²		
	++	$\begin{array}{c} \operatorname{Im} S \\ \operatorname{Re} T \\ \operatorname{Im} T \end{array}$	$2.3 \times 10^{-3} \text{TeV}^{-2}$	$1.2 \times 10^{-3} \mathrm{TeV^{-2}}$	$5.2 \times 10^{-3} \text{TeV}^{-2}$	$1.0 \times 10^{-2} \text{TeV}^{-2}$		

'New tools' for new physics: polarization

Access to chirality

In practically all new physics models

- Chirality of particles/interactions has to be identified
- Since for E>>m: chirality = helicity = polarization
- Access to specific asymmetries (v, heavy leptons, ..., see LC notes)

$$A_{\text{double}} = \frac{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) - \sigma(P_1, P_2) - \sigma(-P_1, -P_2)}{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) + \sigma(P_1, P_2) + \sigma(-P_1, -P_2)},$$

- Exploitation of transversely-polarized beams (~ P_e. P_{e+})
 - Access to tensor-like interactions (Extra dimensions, etc.)
 - Access to CP-violating phenomena
 - Access to specific triple gauge couplings

What's about BSM/SUSY?

- SUSY: still strongly motivated and beautiful, but
 - so far, no hints of a signal at LHC, only rather high exclusion limits in the coloured sector
 - Since Higgs mass of in SUSY not free, mH=126GeV constrains the model
 - But only specific SUSY models (CMSSM,...) less favoured
- Further hints from theory?
 - From low energy precision experiments and theory
- some SUSY particles very light and probably not the simplest model Open playground for the LC!

Impact of stop mixing on light Higgs

MSSM fit, preferred values for stop masses

Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein, Zeune

- Rather large X_t=A_t-μ cot β
- Large stop mixing required
 Best fit prefers heavy stops beyond 1 TeV
 But good fit also for light stops down to ≈300 GeV

Relevance of stop mixing angle: Higgs mass

0.35

0.3

0.2

-0.68

0.66

cos 0:

With polarized beams: A_{IR} applicable

Eberl, Kraml,'05

-0.64

$\mathcal{L}_{\mathrm{int}}$	P_{e^-}	$P_{e^+} \Delta m_{\bar{t}_1}$	$\Delta \cos \theta_{\tilde{t}}$
$100 \; \mathrm{fb^{-1}}$	∓ 0.9	0 1.1%	2.3%
$500 \; {\rm fb}^{-1}$	∓ 0.9	0 - 0.5%	1.1%
$100 \; {\rm fb}^{-1}$	∓ 0.9	$\pm 0.6~0.8\%$	1.4%
$500 \; \mathrm{fb}^{-1}$	∓ 0.9	$\pm 0.6 \ 0.4\%$	0.7%

- Mixing angle Δcosθ,<1%
 - If $\Delta X_t \pm 1\%$: $\Delta m_h = \pm 0.2 GeV$

- If $\Delta X_t \pm 10\%$: $\Delta m_h = \pm 1.5 GeV$
- → Too big to check the consistency of the model!

Chirality proof of sleptons

- Test of chirality of new particles via beam polarization
 - Selectrons = SUSY partner of electrons sel_L,sel_R

Even with $P_{e^-} \ge +90\%$, one can't disentangle the pairs $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$ ': Ratio of the cross sections \approx constant.

Exotics in ew sector: heavy Leptons

- Study: e+e- -> W+W-
 - Very sensitive to leptonic verrtices and trilinear gauge couplings
 - New heavy neutral boson or heavy leptons can contribute
 - E.g., E6 inspired model are consistent with Z's but also new heavy leptons (SU(2))
- Model identification = exclusion of competitive models (incl. SM)
 - Double polarization asymmetries very useful:

$$A_{\rm double} = P_1 P_2 \frac{(\sigma^{RL} + \sigma^{LR}) - (\sigma^{RR} + \sigma^{LL})}{(\sigma^{RL} + \sigma^{LR}) + (\sigma^{RR} + \sigma^{LL})}.$$

$$\leftarrow$$
 $A_{\text{double}}^{\text{SM}} = A_{\text{double}}^{\text{Z'}} = A_{\text{double}}^{\text{AGC}}$

Sensitive to effects from such models and model distinction already at 500 GeV!

Structure of interactions: extra dimensions

- Remember: only effects detectable if P(e-) and P(e+)
 - enables to exploit azimuthal asymmetries

Offers the construction of CP-odd observables in neutralino

production

 Offers distinction between SM and different models of extra dimensions

- Since P_T(e⁻) x P_T(e⁺)-dependence:
 - effects decrease by about a factor 2 when using (80%,30%) instead of (80%60%)
- Transversely polarized beams very effective, need polarized e⁻ and e⁺!

What if nothing else than H is found now?

The exciting Higgs story has just started....

- Since m_H is free parameter in SM at tree level
 - Crucial relations exist, however, between m_{top}, m_W and sin²θ_{eff}
 - If nothing else appears in the electroweak sector, these relations have to be urgently checked
- Which strategy should one aim?
 - exploit precision observables and check whether the measured values fit together at quantum level
 - m_Z , m_W , $α_{had}$, $sin^2θ_{eff}$ und m_{top}
- Exploit `GigaZ' option: high lumi run at \sqrt{s} = 91 GeV
 - Pe-=80% and Pe+=60% required !(If only Pe-=90% : precision ~factor 4 less!)

Higgs story has just started ...

LEP:

 $\sin^2\theta_{\text{eff}}(A_{FB}^{\ b}) = 0.23221 \pm 0.00029$

SLC:

 $\sin^2\theta_{\text{eff}}(A_{LR}) = 0.23098 \pm 0.00026$

World average:

 $\sin^2\theta_{\rm eff} = 0.23153 \pm 0.00016$

Goal GigaZ: $\Delta \sin\theta = 1.3 \ 10^{-5}$

Uncertainties from input parameters: Δm_Z, Δα_{had}, m_{top,...}

 Δm_Z =2.1 MeV: Δm_{top} Δm_{top}

 $\Delta \sin^2 \theta_{eff}^{para} \sim 1.4 \times 10^{-5}$ $\Delta \sin^2 \theta_{eff}^{para} \sim 3.6 (1.8 \text{ future }) \times 10^{-5}$ $\Delta \sin^2 \theta_{eff}^{para} \sim 3 \times 10^{-5}$ $\Delta \sin^2 \theta_{eff}^{para} \sim 0.3 \times 10^{-5}$

What else could we learn? $\sqrt{s=91}_{GeV}$

- Assume only Higgs@LHC but no hints for SUSY:
 - Really SM?
 - Help from $\sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- sin²θ_{eff} can be the crucial quantity to reveal effects of NP!

To close the story... GigaZ

√s=91 GeV

• Measure $\sin^2\theta_{eff}$ via A_{LR} with high precision: $\Delta \sin\theta = 1.3 \cdot 10^{-5}$

Conclusions

- Beam polarization gives 'added-value' to ILC
 - Provides 'new' analysis tools comp. with LHC
- Positron polarization quality and quantity
 - higher lumi
 - less uncertainty
 - Access to something 'new'
- Important from beginning (Higgs + top!)
 - Optimizes physics potential
 - Crucial to compete with LHC options!
 - And.....do not forget GigaZ option: the important safety ticket!!!

Not so much: summary table still valid!

	I many		han nh/0507044
Case	Effects	Gain	hep-ph/0507011
SM:			
top threshold	Improvement of coupling measurement	factor 3	
tq	Limits for FCN top couplings reduced	factor 1.8	
CPV in $t\bar{t}$	Azimuthal CP-odd asymmetries give	P ^T P ^T required	← P _{e+} required
	access to S- and T-currents up to 10 TeV		G. I
W^+W^-	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$	up to a factor 2	
	TGC: error reduction of $\Delta \kappa_{\gamma}$, $\Delta \lambda_{\gamma}$, $\Delta \kappa_{Z}$, $\Delta \lambda_{Z}$	factor 1.8	
	Specific TGC $\tilde{h}_{+} = \text{Im}(g_{1}^{R} + \kappa^{R})/\sqrt{2}$	$P_{c-}^{T}P_{c+}^{T}$ required	
CPV in γZ	Anomalous TGC $\gamma\gamma Z, \gamma ZZ$	$P_{e}^{T}P_{e}^{T}$ required	$\} \leftarrow P_{e+}$ required
HZ	Separation: $HZ \mapsto H \bar{\nu} \nu$	factor 4 with RL	et all
112			
	Suppression of $B=W^+\ell^-\nu$	factor 1.7	
SUSY:			← P _{e+} required
$\bar{e}^{+}\bar{e}^{-}$	Test of quantum numbers L, R	$P_{e^{\pm}}$ required	e+ required
	and measurement of e^\pm Yukawa couplings		
ββ	Enhancement of S/B , $B = WW$	factor 5-7	
	$\Rightarrow m_{\tilde{\mu}_{L,R}}$ in the continuum		
HA , $m_A > 500 \mathrm{GeV}$	Access to difficult parameter space	factor 1.6	
$\bar{\chi}^+ \bar{\chi}^- / \bar{\chi}^0 \bar{\chi}^0$	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{H}}$	factor 2–3	
	Separation between SUSY models,		
	'model-independent' parameter determination		
CPV in $\tilde{\chi}_{i}^{0}\tilde{\chi}_{i}^{0}$	Direct CP-odd observables	$P_{e^{-}}^{T}P_{e^{+}}^{T}$ required	← P _{e+} required
RPV in $\bar{\nu}_{\tau} \rightarrow \ell^{+}\ell^{-}$	Enhancement of S/B , S/\sqrt{B}	factor 10 with LL	64.04000
	Test of spin quantum number		
ED:			1
$G\gamma$	Enhancement of S/B , $B = \gamma \nu \bar{\nu}$,	factor 3	
$e^+e^- \rightarrow f\bar{f}$	Distinction between ADD and RS modes	$P_{c-}^{T}P_{c+}^{T}$ required	← P _{e+} required
Z':	BOARDER TO SECURE STATES AND A SECURE STATES A	6-16-18-18-18-18-18-18-18-18-18-18-18-18-18-	64.04
$e^+e^- \rightarrow f\bar{f}$	Measurement of Z' couplings	factor 1.5	
	Measurement of 2 couplings	factor 1.5	
CI:			∠ D required
$e^+e^- \rightarrow q\bar{q}$	Model independent bounds	P_{c^+} required	← P _{e+} required
Precision measurem	nents of the Standard Model at GigaZ:		
Z-pole	Improvement of $\Delta \sin^2 \theta_W$	factor 5-10	
	Constraints on CMSSM space	factor 5	
CPV in $Z \rightarrow b\bar{b}$	Enhancement of sensitivity	factor 3	
	· · · · · · · · · · · · · · · · · · ·		